Rekart Jerome L, Sandoval C Jimena, Bermudez-Rattoni Federico, Routtenberg Aryeh
Department of Psychology, Northwestern University, Evanston, Illinois 60208, USA.
Learn Mem. 2007 Jun 6;14(6):416-21. doi: 10.1101/lm.516507. Print 2007 Jun.
Relating storage of specific information to a particular neuromorphological change is difficult because behavioral performance factors are not readily disambiguated from underlying cognitive processes. This issue is addressed here by demonstrating robust reorganization of the hippocampal mossy fiber terminal field (MFTF) when adult rats learn the location of a hidden platform but not when rats learn to locate a visible platform. Because the latter task requires essentially the same behavioral performance as the former, the observed MFTF growth is seen as the consequence of specific input-dependent hippocampal activity patterns selectively generated by processing of extramaze but not intramaze cues. Successful performance on the hidden platform task requires formation of spatial memory. Increased MFTFs in hidden platform-trained rats are observed 7 d but not 2 d after training nor in swim controls. These results suggest that structural plasticity of the mossy fiber:CA3 circuit may contribute to the maintenance of long-lasting memory but not to the initial storage of the spatial context.
将特定信息的存储与特定的神经形态学变化联系起来是困难的,因为行为表现因素不容易与潜在的认知过程区分开来。本文通过证明成年大鼠学习隐藏平台位置时海马苔藓纤维终末场(MFTF)的强大重组来解决这个问题,而当大鼠学习定位可见平台时则不会出现这种重组。因为后一个任务所需的行为表现与前一个基本相同,所以观察到的MFTF生长被视为由处理迷宫外部而非迷宫内部线索选择性产生的特定输入依赖性海马活动模式的结果。在隐藏平台任务上的成功表现需要形成空间记忆。在训练7天后观察到隐藏平台训练大鼠的MFTF增加,但训练2天后未观察到,在游泳对照组中也未观察到。这些结果表明,苔藓纤维:CA3回路的结构可塑性可能有助于长期记忆的维持,但对空间背景的初始存储没有贡献。