Darnell Steven J, Page David, Mitchell Julie C
Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
Proteins. 2007 Sep 1;68(4):813-23. doi: 10.1002/prot.21474.
Protein-protein interactions can be altered by mutating one or more "hot spots," the subset of residues that account for most of the interface's binding free energy. The identification of hot spots requires a significant experimental effort, highlighting the practical value of hot spot predictions. We present two knowledge-based models that improve the ability to predict hot spots: K-FADE uses shape specificity features calculated by the Fast Atomic Density Evaluation (FADE) program, and K-CON uses biochemical contact features. The combined K-FADE/CON (KFC) model displays better overall predictive accuracy than computational alanine scanning (Robetta-Ala). In addition, because these methods predict different subsets of known hot spots, a large and significant increase in accuracy is achieved by combining KFC and Robetta-Ala. The KFC analysis is applied to the calmodulin (CaM)/smooth muscle myosin light chain kinase (smMLCK) interface, and to the bone morphogenetic protein-2 (BMP-2)/BMP receptor-type I (BMPR-IA) interface. The results indicate a strong correlation between KFC hot spot predictions and mutations that significantly reduce the binding affinity of the interface.
蛋白质-蛋白质相互作用可通过突变一个或多个“热点”来改变,这些残基子集构成了界面结合自由能的大部分。热点的识别需要大量实验工作,这凸显了热点预测的实用价值。我们提出了两种基于知识的模型,它们提高了预测热点的能力:K-FADE使用由快速原子密度评估(FADE)程序计算的形状特异性特征,而K-CON使用生化接触特征。组合的K-FADE/CON(KFC)模型显示出比计算丙氨酸扫描(Robetta-Ala)更好的整体预测准确性。此外,由于这些方法预测的是已知热点的不同子集,通过组合KFC和Robetta-Ala可显著提高准确性。KFC分析应用于钙调蛋白(CaM)/平滑肌肌球蛋白轻链激酶(smMLCK)界面以及骨形态发生蛋白-2(BMP-2)/I型BMP受体(BMPR-IA)界面。结果表明,KFC热点预测与显著降低界面结合亲和力的突变之间存在很强的相关性。