Suppr超能文献

一种基于概率的光谱诊断算法,用于同时从正常脑组织中鉴别脑肿瘤及其边缘。

A probability-based spectroscopic diagnostic algorithm for simultaneous discrimination of brain tumor and tumor margins from normal brain tissue.

作者信息

Majumder Shovan K, Gebhart Steven, Johnson Mahlon D, Thompson Reid, Lin Wei-Chiang, Mahadevan-Jansen Anita

机构信息

Dept of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.

出版信息

Appl Spectrosc. 2007 May;61(5):548-57. doi: 10.1366/000370207780807704.

Abstract

This paper reports the development of a probability-based spectroscopic diagnostic algorithm capable of simultaneously discriminating tumor core and tumor margins from normal human brain tissues. The algorithm uses a nonlinear method for feature extraction based on maximum representation and discrimination feature (MRDF) and a Bayesian method for classification based on sparse multinomial logistic regression (SMLR). Both the autofluorescence and the diffuse-reflectance spectra acquired in vivo from patients undergoing craniotomy or temporal lobectomy at the Vanderbilt University Medical Center were used to train and validate the algorithm. The classification accuracy was observed to be approximately 96%, 80%, and 97% for the tumor, tumor margin, and normal brain tissues, respectively, for the training data set and approximately 96%, 94%, and 100%, respectively, for the corresponding tissue types in an independent validation data set. The inherently multi-class nature of the algorithm facilitates a rapid and simultaneous classification of tissue spectra into various tissue categories without the need for a hierarchical multi-step binary classification scheme. Further, the probabilistic nature of the algorithm makes it possible to quantitatively assess the certainty of the classification and recheck the samples that are classified with higher relative uncertainty.

摘要

本文报道了一种基于概率的光谱诊断算法的开发,该算法能够同时从正常人类脑组织中区分肿瘤核心和肿瘤边缘。该算法使用基于最大表示和鉴别特征(MRDF)的非线性特征提取方法以及基于稀疏多项逻辑回归(SMLR)的贝叶斯分类方法。在范德比尔特大学医学中心对接受开颅手术或颞叶切除术的患者进行体内采集的自发荧光和漫反射光谱均用于训练和验证该算法。对于训练数据集,肿瘤、肿瘤边缘和正常脑组织的分类准确率分别约为96%、80%和97%,而在独立验证数据集中,相应组织类型的分类准确率分别约为96%、94%和100%。该算法固有的多类性质有助于将组织光谱快速同时分类到各种组织类别中,而无需分层多步二元分类方案。此外,该算法的概率性质使得定量评估分类的确定性以及重新检查分类相对不确定性较高的样本成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验