Suppr超能文献

经先前采集的探头数据实现人卵巢自发荧光的宽场光谱成像和肿瘤学诊断。

Wide-field spectral imaging of human ovary autofluorescence and oncologic diagnosis via previously collected probe data.

机构信息

University of Arizona, College of Optical Sciences, 1630 East University Boulevard, Tucson, Arizona 85721, USA.

出版信息

J Biomed Opt. 2012 Mar;17(3):036003. doi: 10.1117/1.JBO.17.3.036003.

Abstract

With no sufficient screening test for ovarian cancer, a method to evaluate the ovarian disease state quickly and nondestructively is needed. The authors have applied a wide-field spectral imager to freshly resected ovaries of 30 human patients in a study believed to be the first of its magnitude. Endogenous fluorescence was excited with 365-nm light and imaged in eight emission bands collectively covering the 400- to 640-nm range. Linear discriminant analysis was used to classify all image pixels and generate diagnostic maps of the ovaries. Training the classifier with previously collected single-point autofluorescence measurements of a spectroscopic probe enabled this novel classification. The process by which probe-collected spectra were transformed for comparison with imager spectra is described. Sensitivity of 100% and specificity of 51% were obtained in classifying normal and cancerous ovaries using autofluorescence data alone. Specificity increased to 69% when autofluorescence data were divided by green reflectance data to correct for spatial variation in tissue absorption properties. Benign neoplasm ovaries were also found to classify as nonmalignant using the same algorithm. Although applied ex vivo, the method described here appears useful for quick assessment of cancer presence in the human ovary.

摘要

由于缺乏针对卵巢癌的充分筛查测试,因此需要一种能够快速且非破坏性地评估卵巢疾病状态的方法。作者已经将宽场光谱成像仪应用于 30 名人类患者的新鲜切除卵巢中,这项研究据信是同类研究中的首例。使用 365nm 光激发内源性荧光,并在总共涵盖 400-640nm 范围的 8 个发射带中对其成像。线性判别分析用于对所有图像像素进行分类,并生成卵巢的诊断图。通过使用先前收集的光谱探针单点荧光测量值来训练分类器,从而实现了这种新型分类。描述了将探针收集的光谱转换以与成像光谱进行比较的过程。仅使用自发荧光数据,对正常和癌性卵巢进行分类的灵敏度为 100%,特异性为 51%。当自发荧光数据除以绿光反射率数据以校正组织吸收特性的空间变化时,特异性增加到 69%。良性肿瘤卵巢也使用相同的算法分类为非恶性。尽管是在离体应用,但这里描述的方法似乎有助于快速评估人卵巢中的癌症存在。

相似文献

2
Parallel factor analysis of ovarian autofluorescence as a cancer diagnostic.
Lasers Surg Med. 2012 Apr;44(4):282-95. doi: 10.1002/lsm.22014. Epub 2012 Mar 7.
4
Autofluorescence of normal, benign, and malignant ovarian tissues: a pilot study.
Photomed Laser Surg. 2009 Apr;27(2):325-35. doi: 10.1089/pho.2008.2261.
5
Tryptophan autofluorescence imaging of neoplasms of the human colon.
J Biomed Opt. 2012 Jan;17(1):016003. doi: 10.1117/1.JBO.17.1.016003.
7
Reflectance spectroscopy for in vivo characterization of ovarian tissue.
Lasers Surg Med. 2001;28(1):56-66. doi: 10.1002/1096-9101(2001)28:1<56::AID-LSM1017>3.0.CO;2-L.
8
Classification of in vivo autofluorescence spectra using support vector machines.
J Biomed Opt. 2004 Jan-Feb;9(1):180-6. doi: 10.1117/1.1628244.
9
An overview of optical coherence tomography for ovarian tissue imaging and characterization.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 Jan-Feb;7(1):1-16. doi: 10.1002/wnan.1306. Epub 2014 Oct 20.
10
Discriminating normal regions within cancerous hen ovarian tissue using multivariate hyperspectral image analysis.
Rapid Commun Mass Spectrom. 2019 Feb 28;33(4):381-391. doi: 10.1002/rcm.8362.

引用本文的文献

1
Compact and ultracompact spectral imagers: technology and applications in biomedical imaging.
J Biomed Opt. 2023 Apr;28(4):040901. doi: 10.1117/1.JBO.28.4.040901. Epub 2023 Apr 5.
3
Label-free hyperspectral imaging and deep-learning prediction of retinal amyloid β-protein and phosphorylated tau.
PNAS Nexus. 2022 Aug 19;1(4):pgac164. doi: 10.1093/pnasnexus/pgac164. eCollection 2022 Sep.
4
Microscopy is better in color: development of a streamlined spectral light path for real-time multiplex fluorescence microscopy.
Biomed Opt Express. 2022 Jun 7;13(7):3751-3772. doi: 10.1364/BOE.453657. eCollection 2022 Jul 1.
5
Intraoperative multispectral and hyperspectral label-free imaging: A systematic review of in vivo clinical studies.
J Biophotonics. 2019 Sep;12(9):e201800455. doi: 10.1002/jbio.201800455. Epub 2019 Apr 29.
6
Single-Cell Analysis Using Hyperspectral Imaging Modalities.
J Biomech Eng. 2018 Feb 1;140(2):0208021-02080216. doi: 10.1115/1.4038638.
7
Ultraminiature optical design for multispectral fluorescence imaging endoscopes.
J Biomed Opt. 2017 Mar 1;22(3):36013. doi: 10.1117/1.JBO.22.3.036013.
9
Medical hyperspectral imaging: a review.
J Biomed Opt. 2014 Jan;19(1):10901. doi: 10.1117/1.JBO.19.1.010901.

本文引用的文献

1
Parallel factor analysis of ovarian autofluorescence as a cancer diagnostic.
Lasers Surg Med. 2012 Apr;44(4):282-95. doi: 10.1002/lsm.22014. Epub 2012 Mar 7.
2
Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery.
J Biomed Opt. 2010 Sep-Oct;15(5):056022. doi: 10.1117/1.3486612.
4
Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma.
Opt Lett. 2009 Jul 1;34(13):2081-3. doi: 10.1364/ol.34.002081.
6
Objective detection and delineation of oral neoplasia using autofluorescence imaging.
Cancer Prev Res (Phila). 2009 May;2(5):423-31. doi: 10.1158/1940-6207.CAPR-08-0229. Epub 2009 Apr 28.
7
Clinical multiphoton tomography.
J Biophotonics. 2008 Mar;1(1):13-23. doi: 10.1002/jbio.200710022.
9
Dynamic spectral imaging: improving colposcopy.
Clin Cancer Res. 2009 Mar 1;15(5):1814-20. doi: 10.1158/1078-0432.CCR-08-1636. Epub 2009 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验