Suppr超能文献

强制选择自适应阈值估计中随机逼近阶梯的小样本特征

Small-sample characterization of stochastic approximation staircases in forced-choice adaptive threshold estimation.

作者信息

Faes Luca, Nollo Giandomenico, Ravelli Flavia, Ricci Leonardo, Vescovi Massimo, Turatto Massimo, Pavani Francesco, Antolini Renzo

机构信息

Dipartimento di Fisica, Università di Trento, Povo, Trento, Italy.

出版信息

Percept Psychophys. 2007 Feb;69(2):254-62. doi: 10.3758/bf03193747.

Abstract

Despite the widespread use of up-down staircases in adaptive threshold estimation, their efficiency and usability in forced-choice experiments has been recently debated. In this study, simulation techniques were used to determine the small-sample convergence properties of stochastic approximation (SA) staircases as a function of several experimental parameters. We found that satisfying some general requirements (use of the accelerated SA algorithm, clear suprathreshold initial stimulus intensity, large initial step size) the convergence was accurate independently of the spread of the underlying psychometric function. SA staircases were also reliable for targeting percent-correct levels far from the midpoint of the psychometric function and performed better than classical up-down staircases with fixed step size. These results prompt the utilization of SA staircases in practical forced-choice estimation of sensory thresholds.

摘要

尽管上下阶梯法在自适应阈值估计中得到广泛应用,但其在强制选择实验中的效率和可用性最近受到了争议。在本研究中,我们使用模拟技术来确定随机逼近(SA)阶梯法的小样本收敛特性,作为几个实验参数的函数。我们发现,满足一些一般要求(使用加速SA算法、清晰的阈上初始刺激强度、大的初始步长)时,收敛是准确的,与潜在心理测量函数的离散程度无关。SA阶梯法在针对远离心理测量函数中点的正确率水平时也很可靠,并且比具有固定步长的传统上下阶梯法表现更好。这些结果促使在实际的强制选择感官阈值估计中使用SA阶梯法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验