García-Pérez M A
Departamento de Metodología, Facultad de Psicología, Universidad Complutense, Madrid, Spain.
Optom Vis Sci. 2001 Jan;78(1):56-64. doi: 10.1097/00006324-200101010-00015.
Interest in the use of adaptive staircase methods in clinical practice is increasing, but time limitations require that they be based on yes-no trials. The psychometric properties of yes-no staircases with fixed step sizes (FSS staircases) in small-sample situations have never been studied in depth. As a result, information is lacking as to what is the optimal setup for an FSS staircase. To determine this optimal setup, we used simulation techniques to study the asymptotic and small-sample convergence of yes-no FSS staircases as a function of the up/down rule, the size of the steps up or down, the starting stimulus level, the spread of the psychometric function, and the lapsing rate. Our results indicate that yes-no FSS staircases with steps up and down of the same size are unstable because with these settings, the staircases yield different results across variations in irrelevant parameters such as the spread of the psychometric function or the starting level. Our study also identified settings with which the properties of estimates are unaffected by these factors. With these optimal settings, yes-no FSS staircases can provide very quick and accurate estimates in 7 to 8 trials. Practical recommendations are given to get the best out of yes-no FSS staircases.
临床实践中对采用自适应阶梯法的兴趣日益浓厚,但由于时间限制,这些方法需基于二选一试验。小样本情况下固定步长的二选一阶梯法(FSS阶梯法)的心理测量特性从未得到深入研究。因此,关于FSS阶梯法的最佳设置尚无相关信息。为确定这种最佳设置,我们使用模拟技术研究了二选一FSS阶梯法的渐近和小样本收敛情况,该收敛情况是上升/下降规则、上升或下降步长大小、起始刺激水平、心理测量函数的离散度以及失误率的函数。我们的结果表明,上升和下降步长相同的二选一FSS阶梯法不稳定,因为在这些设置下,阶梯法在无关参数(如心理测量函数的离散度或起始水平)变化时会产生不同结果。我们的研究还确定了估计属性不受这些因素影响的设置。通过这些最佳设置,二选一FSS阶梯法可在7至8次试验中提供非常快速且准确的估计。文中给出了充分利用二选一FSS阶梯法的实用建议。