Jungblut Stefan P, Klostermeier Dagmar
University of Basel, Biozentrum, Dept. of Biophysical Chemistry, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
J Mol Biol. 2007 Aug 3;371(1):197-209. doi: 10.1016/j.jmb.2007.05.031. Epub 2007 May 18.
Reverse gyrases are topoisomerases that catalyze ATP-dependent positive supercoiling of circular covalently closed DNA. They consist of an N-terminal helicase-like domain, fused to a C-terminal topoisomerase I-like domain. Most of our knowledge on reverse gyrase-mediated positive DNA supercoiling is based on studies of archaeal enzymes. To identify general and individual properties of reverse gyrases, we set out to characterize the reverse gyrase from a hyperthermophilic eubacterium. Thermotoga maritima reverse gyrase relaxes negatively supercoiled DNA in the presence of ADP or the non-hydrolyzable ATP-analog ADPNP. Nucleotide binding is necessary, but not sufficient for the relaxation reaction. In the presence of ATP, positive supercoils are introduced at temperatures above 50 degrees C. However, ATP hydrolysis is stimulated by DNA already at 37 degrees C, suggesting that reverse gyrase is not frozen at this temperature, but capable of undergoing inter-domain communication. Positive supercoiling by reverse gyrase is strictly coupled to ATP hydrolysis. At the physiological temperature of 75 degrees C, reverse gyrase binds and hydrolyzes ATPgammaS. Surprisingly, ATPgammaS hydrolysis is stimulated by DNA, and efficiently promotes positive DNA supercoiling, demonstrating that inter-domain communication during positive supercoiling is fully functional with both ATP and ATPgammaS. These findings support a model for communication between helicase-like and topoisomerase domains in reverse gyrase, in which an ATP and DNA-induced closure of the cleft in the helicase-like domain initiates a cycle of conformational changes that leads to positive DNA supercoiling.
反向回旋酶是一种拓扑异构酶,可催化环状共价闭合DNA的ATP依赖性正向超螺旋化。它们由一个与C端拓扑异构酶I样结构域融合的N端解旋酶样结构域组成。我们对反向回旋酶介导的正向DNA超螺旋化的大部分了解都基于对古细菌酶的研究。为了确定反向回旋酶的一般特性和个体特性,我们着手对一种嗜热真细菌的反向回旋酶进行表征。嗜热栖热菌反向回旋酶在存在ADP或不可水解的ATP类似物ADPNP的情况下可松弛负超螺旋DNA。核苷酸结合是必要的,但对于松弛反应并不充分。在ATP存在的情况下,在高于50摄氏度的温度下会引入正向超螺旋。然而,DNA在37摄氏度时就会刺激ATP水解,这表明反向回旋酶在该温度下并未冻结,而是能够进行结构域间的通讯。反向回旋酶的正向超螺旋化与ATP水解严格偶联。在75摄氏度的生理温度下,反向回旋酶结合并水解ATPγS。令人惊讶的是,DNA会刺激ATPγS水解,并有效促进正向DNA超螺旋化,这表明正向超螺旋化过程中的结构域间通讯在ATP和ATPγS作用下均能充分发挥功能。这些发现支持了反向回旋酶中解旋酶样结构域和拓扑异构酶结构域之间通讯的模型,其中ATP和DNA诱导的解旋酶样结构域裂隙闭合启动了一系列构象变化,导致正向DNA超螺旋化。