Suppr超能文献

系数α的渐近无分布(ADF)区间估计

Asymptotically distribution-free (ADF) interval estimation of coefficient alpha.

作者信息

Maydeu-Olivares Alberto, Coffman Donna L, Hartmann Wolfgang M

机构信息

Department of Psychology, University of Barcelona, Barcelona, Spain.

出版信息

Psychol Methods. 2007 Jun;12(2):157-76. doi: 10.1037/1082-989X.12.2.157.

Abstract

The point estimate of sample coefficient alpha may provide a misleading impression of the reliability of the test score. Because sample coefficient alpha is consistently biased downward, it is more likely to yield a misleading impression of poor reliability. The magnitude of the bias is greatest precisely when the variability of sample alpha is greatest (small population reliability and small sample size). Taking into account the variability of sample alpha with an interval estimator may lead to retaining reliable tests that would be otherwise rejected. Here, the authors performed simulation studies to investigate the behavior of asymptotically distribution-free (ADF) versus normal-theory interval estimators of coefficient alpha under varied conditions. Normal-theory intervals were found to be less accurate when item skewness >1 or excess kurtosis >1. For sample sizes over 100 observations, ADF intervals are preferable, regardless of item skewness and kurtosis. A formula for computing ADF confidence intervals for coefficient alpha for tests of any size is provided, along with its implementation as an SAS macro.

摘要

样本系数α的点估计可能会对测试分数的可靠性产生误导性印象。由于样本系数α始终向下偏差,它更有可能产生可靠性差的误导性印象。当样本α的变异性最大时(总体可靠性小且样本量小),偏差的幅度恰好最大。使用区间估计器考虑样本α的变异性可能会导致保留那些否则会被拒绝的可靠测试。在这里,作者进行了模拟研究,以调查在不同条件下系数α的渐近无分布(ADF)与正态理论区间估计器的行为。当项目偏度>1或峰度>1时,发现正态理论区间不太准确。对于超过100个观测值的样本量,无论项目偏度和峰度如何,ADF区间都是更可取的。提供了一个用于计算任何规模测试的系数α的ADF置信区间的公式,以及作为SAS宏的实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验