文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

高性能生物材料蓝图:全长蜘蛛牵引丝基因。

Blueprint for a high-performance biomaterial: full-length spider dragline silk genes.

机构信息

Department of Biology, University of California Riverside, Riverside, California, United States of America.

出版信息

PLoS One. 2007 Jun 13;2(6):e514. doi: 10.1371/journal.pone.0000514.


DOI:10.1371/journal.pone.0000514
PMID:17565367
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC1885213/
Abstract

Spider dragline (major ampullate) silk outperforms virtually all other natural and manmade materials in terms of tensile strength and toughness. For this reason, the mass-production of artificial spider silks through transgenic technologies has been a major goal of biomimetics research. Although all known arthropod silk proteins are extremely large (>200 kiloDaltons), recombinant spider silks have been designed from short and incomplete cDNAs, the only available sequences. Here we describe the first full-length spider silk gene sequences and their flanking regions. These genes encode the MaSp1 and MaSp2 proteins that compose the black widow's high-performance dragline silk. Each gene includes a single enormous exon (>9000 base pairs) that translates into a highly repetitive polypeptide. Patterns of variation among sequence repeats at the amino acid and nucleotide levels indicate that the interaction of selection, intergenic recombination, and intragenic recombination governs the evolution of these highly unusual, modular proteins. Phylogenetic footprinting revealed putative regulatory elements in non-coding flanking sequences. Conservation of both upstream and downstream flanking sequences was especially striking between the two paralogous black widow major ampullate silk genes. Because these genes are co-expressed within the same silk gland, there may have been selection for similarity in regulatory regions. Our new data provide complete templates for synthesis of recombinant silk proteins that significantly improve the degree to which artificial silks mimic natural spider dragline fibers.

摘要

蜘蛛牵引丝(主要囊状)在拉伸强度和韧性方面优于几乎所有其他天然和人造材料。出于这个原因,通过转基因技术大规模生产人工蜘蛛丝一直是仿生学研究的主要目标。尽管所有已知的节肢动物丝蛋白都非常大(>200 千道尔顿),但重组蜘蛛丝是由短而不完整的 cDNA 设计而成的,这是唯一可用的序列。在这里,我们描述了第一个全长蜘蛛丝基因序列及其侧翼区域。这些基因编码构成黑寡妇高性能牵引丝的 MaSp1 和 MaSp2 蛋白。每个基因都包含一个单一的巨大外显子(>9000 个碱基对),翻译成高度重复的多肽。氨基酸和核苷酸水平上序列重复的变异模式表明,选择、基因间重组和基因内重组的相互作用控制着这些非常不寻常的模块化蛋白的进化。系统发育足迹分析揭示了非编码侧翼序列中的推定调节元件。两个平行的黑寡妇主要囊状丝基因之间的上下游侧翼序列的保守性尤其引人注目。由于这些基因在同一个丝腺中共表达,因此在调节区域可能存在相似性的选择。我们的新数据为合成重组丝蛋白提供了完整的模板,这些模板显著提高了人工丝模仿天然蜘蛛牵引丝纤维的程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7e/1885213/b0c6e58d28c3/pone.0000514.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7e/1885213/f05b541d936f/pone.0000514.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7e/1885213/bef4384e0f99/pone.0000514.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7e/1885213/33100180a1fc/pone.0000514.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7e/1885213/617a892cc056/pone.0000514.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7e/1885213/ce8790cace4d/pone.0000514.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7e/1885213/b0c6e58d28c3/pone.0000514.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7e/1885213/f05b541d936f/pone.0000514.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7e/1885213/bef4384e0f99/pone.0000514.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7e/1885213/33100180a1fc/pone.0000514.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7e/1885213/617a892cc056/pone.0000514.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7e/1885213/ce8790cace4d/pone.0000514.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7e/1885213/b0c6e58d28c3/pone.0000514.g006.jpg

相似文献

[1]
Blueprint for a high-performance biomaterial: full-length spider dragline silk genes.

PLoS One. 2007-6-13

[2]
Chromosome mapping of dragline silk genes in the genomes of widow spiders (Araneae, Theridiidae).

PLoS One. 2010-9-21

[3]
The molecular structures of major ampullate silk proteins of the wasp spider, Argiope bruennichi: a second blueprint for synthesizing de novo silk.

Comp Biochem Physiol B Biochem Mol Biol. 2012-12-20

[4]
Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family.

Mol Biol Evol. 2004-10

[5]
Proteomic Evidence for Components of Spider Silk Synthesis from Black Widow Silk Glands and Fibers.

J Proteome Res. 2015-10-2

[6]
Spider minor ampullate silk proteins are constituents of prey wrapping silk in the cob weaver Latrodectus hesperus.

Biochemistry. 2008-4-22

[7]
Evolution of spider silk proteins: insight from phylogenetic analyses.

EXS. 2002

[8]
Complete gene sequence and mechanical property of the fourth type of major ampullate silk protein.

Acta Biomater. 2023-1-1

[9]
Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi.

Biochemistry. 2006-3-14

[10]
Multiple recombining loci encode MaSp1, the primary constituent of dragline silk, in widow spiders (Latrodectus: Theridiidae).

Mol Biol Evol. 2008-2

引用本文的文献

[1]
An engineered self-cleavage fusion system for the production of chimaera spider silk proteins.

BMC Biotechnol. 2025-7-1

[2]
Scale up of fermentation of recombinant Escherichia coli for efficient production of spider drag silk protein MaSp1s and its dimers.

Microb Cell Fact. 2025-5-14

[3]
Recombinant production of spider silk protein in Physcomitrella photobioreactors.

Plant Cell Rep. 2025-4-26

[4]
Non-invasive molecular species identification using spider silk proteomics.

Sci Rep. 2025-4-22

[5]
Native Silk Fibers: Protein Sequence and Structure Influences on Thermal and Mechanical Properties.

Biomacromolecules. 2025-4-14

[6]
Expression of spider silk protein in tobacco improves drought tolerance with minimal effects on its mechanotype.

Plant J. 2025-1

[7]
Chemical and temporal manipulation of early steps in protein assembly tunes the structure and intermolecular interactions of protein-based materials.

Protein Sci. 2025-2

[8]
Effects of Mini-Spidroin Repeat Region on the Mechanical Properties of Artificial Spider Silk Fibers.

ACS Omega. 2024-10-7

[9]
Strategies for Making High-Performance Artificial Spider Silk Fibers.

Adv Funct Mater. 2024-8-28

[10]
Recent Advances in Implantable 3D-Printed Scaffolds for Repair of Spinal Cord Injury.

Adv Pharm Bull. 2024-7

本文引用的文献

[1]
RGD-functionalized bioengineered spider dragline silk biomaterial.

Biomacromolecules. 2006-11

[2]
N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins.

Biomacromolecules. 2006-11

[3]
Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1gamma), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae).

Mol Phylogenet Evol. 2007-2

[4]
Detecting the limits of regulatory element conservation and divergence estimation using pairwise and multiple alignments.

BMC Bioinformatics. 2006-8-14

[5]
Silk genes support the single origin of orb webs.

Science. 2006-6-23

[6]
Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775).

J Exp Biol. 2006-7

[7]
An essential role for the C-terminal domain of a dragline spider silk protein in directing fiber formation.

Biomacromolecules. 2006-6

[8]
Promoter analysis of MADS-box genes in eudicots through phylogenetic footprinting.

Mol Biol Evol. 2006-6

[9]
Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi.

Biochemistry. 2006-3-14

[10]
TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes.

Nucleic Acids Res. 2006-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索