Li Chao, Protsenko Dmitry E, Zemek Allison, Chae Yong-Seok, Wong Brian
Beckman Laser Institute and Medical Clinic, University of California Irvine, 1002 Health Sciences Road east, Irvine, California 92612, USA.
Lasers Surg Med. 2007 Jun;39(5):451-7. doi: 10.1002/lsm.20514.
Laser cartilage reshaping (LCR) involves the use of photo-thermal heating to reshape cartilage. Its clinical relevance depends on the ability to minimize thermal injury in irradiated regions. The present study seeks to understand the safety of LCR by determining shape change and resultant tissue viability as a function of laser dosimetry.
STUDY DESIGN/MATERIALS AND METHODS: Rabbit nasal septal cartilage were irradiated using a Nd:YAG laser (lambda = 1.32 microm, 5.4 mm spot diameter) with different exposure times of 4, 6, 8, 10, 12, and 16 seconds and powers of 4, 6, and 8 W. Temperature on the cartilage surface in the laser-irradiated region was collected using infrared thermography, this data was then used to predict tissue damage via a rate process model. A Live/Dead viability assay combined with fluorescent confocal microscopy was used to measure the amount of thermal damage generated in the irradiated specimens.
Considerable thermal injury occurred at and below the laser-reshaping parameters that produced clinically relevant shape change using the present Nd:YAG laser. Confocal microscopy identified dead cells spanning the entire cross-sectional thickness of the cartilage specimen (about 500 microm thick) at laser power density and exposure times above 4 W and 6 seconds; damage increased with time and irradiance. The damage predictions made by the rate process model compared favorably with measured data.
These results demonstrate that significant thermal damage is concurrent with clinically relevant shape change. This contradicts previous notions that there is a privileged laser dosimetry parameter where clinically relevant shape change and tissue viability coexist.
激光软骨重塑(LCR)涉及利用光热加热来重塑软骨。其临床相关性取决于将受辐照区域的热损伤降至最低的能力。本研究旨在通过确定形状变化以及作为激光剂量测定函数的所得组织活力来了解LCR的安全性。
研究设计/材料与方法:使用Nd:YAG激光(波长 = 1.32微米,光斑直径5.4毫米)对兔鼻中隔软骨进行辐照,曝光时间分别为4、6、8、10、12和16秒,功率分别为4、6和8瓦。使用红外热成像收集激光辐照区域软骨表面的温度,然后通过速率过程模型利用该数据预测组织损伤。使用活/死细胞活力测定法结合荧光共聚焦显微镜来测量辐照标本中产生的热损伤量。
使用当前的Nd:YAG激光,在产生临床相关形状变化的激光重塑参数及以下时发生了相当大的热损伤。共聚焦显微镜在激光功率密度和曝光时间高于4瓦和6秒时,识别出软骨标本整个横截面厚度(约500微米厚)内的死细胞;损伤随时间和辐照度增加。速率过程模型做出的损伤预测与实测数据吻合良好。
这些结果表明,显著的热损伤与临床相关的形状变化同时发生。这与之前认为存在一个特殊的激光剂量测定参数,使得临床相关形状变化和组织活力共存的观念相矛盾。