Suppr超能文献

纳入随机表型和基因型错误分类误差的病例对照基因关联线性趋势检验。

Linear trend tests for case-control genetic association that incorporate random phenotype and genotype misclassification error.

作者信息

Gordon Derek, Haynes Chad, Yang Yaning, Kramer Patricia L, Finch Stephen J

机构信息

Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, USA.

出版信息

Genet Epidemiol. 2007 Dec;31(8):853-70. doi: 10.1002/gepi.20246.

Abstract

The purpose of this work is the development of linear trend tests that allow for error (LTT ae), specifically incorporating double-sampling information on phenotypes and/or genotypes. We use a likelihood framework. Misclassification errors are estimated via double sampling. Unbiased estimates of penetrances and genotype frequencies are determined through application of the Expectation-Maximization algorithm. We perform simulation studies to evaluate false-positive rates for various genotype classification weights (recessive, dominant, additive). We compare simulated power between the LTT ae and its genotypic test equivalent, the LRT ae, in the presence of phenotype and genotype misclassification, to evaluate power gains of the LTT ae for multi-locus haplotype association with a dominant mode of inheritance. Finally, we apply LTT ae and a method without double-sample information (LTT std) to double-sampled phenotype data for an actual Alzheimer's disease (AD) case-control study with ApoE genotypes. Simulation results suggest that the LTT ae maintains correct false-positive rates in the presence of misclassification. For power simulations, the LTT ae method is at least as powerful as LRT ae method, with a maximum power gain of 0.42 over the LRT ae method for certain parameter settings. For AD data, LTT ae provides more significant evidence for association (permutation p=0.0522) than LTT std (permutation p=0.1684). This is due to observed phenotype misclassification. The LTT ae statistic enables researchers to apply linear trend tests to case-control genetic data, increasing power to detect association in the presence of misclassification. If the disease MOI is known, LTT ae methods are usually more powerful due to the fact that the statistic has fewer degrees of freedom.

摘要

本研究的目的是开发一种允许存在误差的线性趋势检验(LTT ae),特别纳入关于表型和/或基因型的双重抽样信息。我们使用似然框架。通过双重抽样估计错误分类误差。通过应用期望最大化算法确定外显率和基因型频率的无偏估计。我们进行模拟研究以评估各种基因型分类权重(隐性、显性、加性)的假阳性率。在存在表型和基因型错误分类的情况下,我们比较LTT ae与其基因型检验等效方法LRT ae之间的模拟功效,以评估LTT ae在多基因座单倍型与显性遗传模式关联中的功效增益。最后,我们将LTT ae和一种无双重样本信息的方法(LTT std)应用于具有载脂蛋白E(ApoE)基因型的实际阿尔茨海默病(AD)病例对照研究的双重抽样表型数据。模拟结果表明,在存在错误分类的情况下,LTT ae能保持正确的假阳性率。对于功效模拟,LTT ae方法至少与LRT ae方法一样有效,在某些参数设置下,相对于LRT ae方法,最大功效增益为0.42。对于AD数据,LTT ae比LTT std提供了更显著的关联证据(置换p = 0.0522)(置换p = 0.1684)。这是由于观察到的表型错误分类。LTT ae统计量使研究人员能够将线性趋势检验应用于病例对照遗传数据,在存在错误分类的情况下提高检测关联的功效。如果疾病的遗传模式已知,LTT ae方法通常更有效,因为该统计量的自由度较少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验