UMR CNRS 6521, Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques, CS 93837, Brest, France.
Chemistry. 2012 Aug 27;18(35):11123-38. doi: 10.1002/chem.201201087. Epub 2012 Jul 16.
The behavior of [Fe(2)(CO)(4)(κ(2)-PNP(R))(μ-pdt)] (PNP(R) =(Ph(2)PCH(2))(2)NR, R=Me (1), Ph (2); pdt=S(CH(2))(3)S) in the presence of acids is investigated experimentally and theoretically (using density functional theory) in order to determine the mechanisms of the proton reduction steps supported by these complexes, and to assess the role of the PNP(R) appended base in these processes for different redox states of the metal centers. The nature of the R substituent of the nitrogen base does not substantially affect the course of the protonation of the neutral complex by CF(3)SO(3)H or CH(3)SO(3)H; the cation with a bridging hydride ligand, 1 μH(+) (R=Me) or 2 μH(+) (R=Ph) is obtained rapidly. Only 1 μH(+) can be protonated at the nitrogen atom of the PNP chelate by HBF(4)·Et(2)O or CF(3)SO(3)H, which results in a positive shift of the proton reduction by approximately 0.15 V. The theoretical study demonstrates that in this process, dihydrogen can be released from a η(2)-H(2) species in the Fe(I)Fe(II) state. When R=Ph, the bridging hydride cation 2 μH(+) cannot be protonated at the amine function by HBF(4)·Et(2)O or CF(3)SO(3)H, and protonation at the N atom of the one-electron reduced analogue is also less favored than that of a S atom of the partially de-coordinated dithiolate bridge. In this situation, proton reduction occurs at the potential of the bridging hydride cation, 2 μH(+). The rate constants of the overall proton reduction processes are small for both complexes 1 and 2 (k(obs) ≈4-7 s(-1)) because of the slow intramolecular proton migration and H(2) release steps identified by the theoretical study.
实验和理论(使用密度泛函理论)研究了 [Fe(2)(CO)(4)(κ(2)-PNP(R))(μ-pdt)](PNP(R) =(Ph(2)PCH(2))(2)NR,R=Me (1),Ph (2);pdt=S(CH(2))(3)S)在酸存在下的行为,以确定这些配合物支持的质子还原步骤的机制,并评估附加碱基在这些过程中对金属中心不同氧化还原态的作用。氮碱基的 R 取代基的性质不会实质上影响中性配合物被 CF(3)SO(3)H 或 CH(3)SO(3)H 质子化的过程;用桥接氢化物配体得到阳离子 1 μH(+)(R=Me)或 2 μH(+)(R=Ph)。只有 1 μH(+)可以被 HBF(4)·Et(2)O 或 CF(3)SO(3)H 在 PNP 螯合物的氮原子上质子化,这导致质子还原的正移约 0.15 V。理论研究表明,在这个过程中,二氢可以从 Fe(I)Fe(II)态的 η(2)-H(2)物种中释放出来。当 R=Ph 时,桥接氢化物阳离子 2 μH(+)不能被 HBF(4)·Et(2)O 或 CF(3)SO(3)H 在胺官能团上质子化,并且一电子还原类似物的 N 原子上的质子化也不如部分去配位二硫代桥的 S 原子上的质子化有利。在这种情况下,质子还原发生在桥接氢化物阳离子 2 μH(+)的电位处。由于理论研究确定了慢的分子内质子迁移和 H(2)释放步骤,两种配合物 1 和 2 的总质子还原过程的速率常数都很小(k(obs) ≈4-7 s(-1))。