Suppr超能文献

线粒体在非酒精性脂肪性肝病中的作用。

Role of mitochondria in non-alcoholic fatty liver disease.

作者信息

Pessayre Dominique

机构信息

French National Institute of Health and Medical Research (INSERM) Unit 773, Bichat-Beaujon Center for Biomedical Research, Mitochondrial Team, and Paris 7 University, Faculty of Medicine Xavier Bichat, Paris, France.

出版信息

J Gastroenterol Hepatol. 2007 Jun;22 Suppl 1:S20-7. doi: 10.1111/j.1440-1746.2006.04640.x.

Abstract

Mitochondrial dysfunction is involved in the three stages of the transition from lack of exercise and excessive food intake to insulin resistance, diabetes and non-alcoholic steatohepatitis (NASH). In muscle, lack of exercise, a fat-rich diet, a polymorphism in peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1), and possibly age-related mitochondrial DNA (mtDNA) mutations may variously combine their effects to decrease PGC-1 expression, mitochondrial biogenesis and fat oxidation. Together with excessive food intake, insufficient fat oxidation causes fat accumulation and cellular stress in myocytes. The activation of Jun N-terminal kinase and protein kinase C-theta triggers the serine phosphorylation and inactivation of the insulin receptor substrate, and hampers the insulin-mediated translocation of glucose transporter-4 to the plasma membrane. Initially, the trend for increased blood glucose increases insulin secretion by pancreatic beta-cells. High plasma insulin levels compensate for insulin resistance in muscle and maintain normal blood glucose levels. Eventually, however, increased uncoupling protein-2 expression and possibly acquired mtDNA mutations in pancreatic beta-cells can blunt glucose-mediated adenosine triphosphate (ATP) formation and insulin secretion, to cause diabetes in some patients. High plasma glucose and/or insulin levels induce hepatic lipogenesis and cause hepatic steatosis. In fat-engorged hepatocytes, several vicious cycles involving tumor necrosis factor-alpha, reactive oxygen species (ROS), peroxynitrite, and lipid peroxidation products alter respiratory chain polypeptides and mtDNA, thus partially blocking the flow of electrons in the respiratory chain. The overreduction of upstream respiratory chain complexes increases mitochondrial ROS and peroxynitrite formation. Oxidative stress increases the release of lipid peroxidation products and cytokines, which together trigger the liver lesions of NASH.

摘要

线粒体功能障碍参与了从不运动和过度饮食到胰岛素抵抗、糖尿病和非酒精性脂肪性肝炎(NASH)转变的三个阶段。在肌肉中,缺乏运动、富含脂肪的饮食、过氧化物酶体增殖物激活受体γ共激活因子-1(PGC-1)的多态性以及可能与年龄相关的线粒体DNA(mtDNA)突变,可能会以不同方式共同作用,降低PGC-1表达、线粒体生物合成和脂肪氧化。与过度饮食一起,脂肪氧化不足会导致脂肪在肌细胞中积累和细胞应激。Jun N端激酶和蛋白激酶C-θ的激活会触发胰岛素受体底物的丝氨酸磷酸化和失活,并阻碍胰岛素介导的葡萄糖转运蛋白4向质膜的转位。最初,血糖升高的趋势会增加胰腺β细胞的胰岛素分泌。高血浆胰岛素水平可补偿肌肉中的胰岛素抵抗并维持正常血糖水平。然而,最终,胰腺β细胞中解偶联蛋白-2表达增加以及可能获得的mtDNA突变会削弱葡萄糖介导的三磷酸腺苷(ATP)形成和胰岛素分泌,从而导致一些患者患糖尿病。高血浆葡萄糖和/或胰岛素水平会诱导肝脏脂肪生成并导致肝脂肪变性。在脂肪充盈的肝细胞中,几个涉及肿瘤坏死因子-α、活性氧(ROS)、过氧亚硝酸盐和脂质过氧化产物的恶性循环会改变呼吸链多肽和mtDNA,从而部分阻断呼吸链中的电子流动。上游呼吸链复合物的过度还原会增加线粒体ROS和过氧亚硝酸盐的形成。氧化应激会增加脂质过氧化产物和细胞因子的释放,它们共同引发NASH的肝脏病变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验