Polakof Sergio, Míguez Jesús M, Soengas José L
Laboratorio de Fisioloxía Animal, Facultade de Bioloxía, Edificio de Ciencias Experimentais, Universidade de Vigo, E-36310 Vigo, Spain.
Am J Physiol Regul Integr Comp Physiol. 2007 Sep;293(3):R1410-20. doi: 10.1152/ajpregu.00283.2007. Epub 2007 Jun 13.
We aimed to support in vitro the glucosensing capacity observed in vivo in rainbow trout hypothalamus, hindbrain, and Brockmann bodies (BB) and to obtain preliminary evidence of the mechanisms involved. The response of parameters involved in the glucosensing capacity [hexokinase, hexokinase IV (glucokinase), and pyruvate kinase activities and glucose and glycogen levels] was assessed in these tissues incubated for 1 h with 2, 4, or 8 mM D-glucose alone (control) or with specific agonists/inhibitors of the steps involved in glucosensing capacity in mammals. These agents were a competitor for glucose phosphorylation (15 mM mannose), sulfonylurea receptor-1 effectors (500 microM tolbutamide or diazoxide), glycolytic intermediates (15 mM glycerol, lactate, or pyruvate), and inhibitors of glucose transport (10 microM cytochalasin B), glycolysis [20 mM 2-deoxy-D-glucose (2-DG)], and L-type calcium channel (1 microM nifedipine). Control incubations of the three tissues displayed increased glucose and glycogen levels and glucokinase activities in response to increased medium glucose, thus supporting our previous in vivo studies. Furthermore, critical components of the glucosensing mammalian machinery are apparently functioning in the three tissues. The responses in brain regions to all substances tested (except 2-DG and nifedipine) were similar to those observed in mammals, suggesting a similar glucosensing machinery. In contrast, in BB, only the effects of 2-DG, lactate, pyruvate, diazoxide, and nifedipine were similar to those of mammalian beta-cells, suggesting that some of the components of the piscine glucosensing model are different than those of mammals. Such differences may relate to the importance of amino acids rather than glucose signaling in the trout BB.
我们旨在体外支持虹鳟下丘脑、后脑和布罗克曼体(BB)中体内观察到的葡萄糖感应能力,并获得相关机制的初步证据。在这些组织中,单独用2、4或8 mM D-葡萄糖(对照)或与哺乳动物葡萄糖感应能力相关步骤的特异性激动剂/抑制剂孵育1小时后,评估葡萄糖感应能力相关参数[己糖激酶、己糖激酶IV(葡萄糖激酶)、丙酮酸激酶活性以及葡萄糖和糖原水平]的反应。这些试剂包括葡萄糖磷酸化的竞争性抑制剂(15 mM甘露糖)、磺酰脲受体-1效应剂(500 μM甲苯磺丁脲或二氮嗪)、糖酵解中间产物(15 mM甘油、乳酸或丙酮酸)以及葡萄糖转运抑制剂(10 μM细胞松弛素B)、糖酵解抑制剂[20 mM 2-脱氧-D-葡萄糖(2-DG)]和L型钙通道抑制剂(1 μM硝苯地平)。对这三种组织的对照孵育显示,随着培养基葡萄糖水平的升高,葡萄糖和糖原水平以及葡萄糖激酶活性增加,从而支持了我们之前的体内研究。此外,葡萄糖感应哺乳动物机制的关键组成部分显然在这三种组织中发挥作用。脑区对所有测试物质(2-DG和硝苯地平除外)的反应与在哺乳动物中观察到的相似,表明存在类似的葡萄糖感应机制。相比之下,在BB中,只有2-DG、乳酸、丙酮酸、二氮嗪和硝苯地平的作用与哺乳动物β细胞相似,这表明鱼类葡萄糖感应模型的一些组成部分与哺乳动物不同。这种差异可能与氨基酸而非葡萄糖信号在虹鳟BB中的重要性有关。