应激改变了虹鳟鱼下丘脑、后脑、肝脏和 Brockmann 体的食物摄入和葡萄糖感应反应。
Stress alters food intake and glucosensing response in hypothalamus, hindbrain, liver, and Brockmann bodies of rainbow trout.
机构信息
Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain.
出版信息
Physiol Behav. 2010 Nov 2;101(4):483-93. doi: 10.1016/j.physbeh.2010.07.016. Epub 2010 Aug 3.
In fish food intake is altered under stress conditions, and in a fish teleost model like rainbow trout food intake is associated with the activity of the glucosensor systems. Thus, we aimed to evaluate the possible interaction of stress with the response of glucosensor mechanisms in rainbow trout. Thus, we subjected rainbow trout (via intraperitoneal injections) to normoglycaemic (control), hypoglycaemic (4 mg.kg(-1) bovine insulin) or hyperglycaemic (500 mg.kg(-1) glucose body mass) conditions for 5 days under normal stocking density (NSD, 10 kg fish mass·m(-3)) or stress conditions induced by high stocking density (HSD, 70 kg fish mass·m(-3)). The experimental design was appropriate since hypoglycemia and hyperglycemia were observed in fish under NSD whereas in normoglycaemic fish HSD induced changes in stress-related parameters similar to those reported in fish literature, such as increased levels of cortisol and glucose in plasma and decreased levels of glycogen in liver. Food intake did not respond to changes in plasma glucose levels in fish under HSD conditions, in contrast with the decreased food intake observed when glucose levels increased in fish under NSD conditions. Moreover, the changes with the increase in plasma glucose levels in parameters involved in glucosensing in liver, Brockmann bodies (BB), hypothalamus, and hindbrain of fish in NSD either disappeared (DHAP and GAP levels, and GK, PK, and GPase activities in liver; glucose, DHAP and GAP levels in BB; glucose and DHAP levels, and GK and PK activities in hypothalamus; glycogen and DHAP levels, and GSase activity in hindbrain) or changed (cortisol levels in plasma; glycogen and GAP levels, and GSase and FBPase activities in liver; GK and PK activities in BB; GK and PK activities in hindbrain) in fish under HSD. Those changes suggest for the first time in fish the existence of an interaction between glucosensing capacity and stress. The readjustment in the activity of glucosensor systems is also associated with changes in food intake resulting in an inability of the fish to compensate with changes in food intake those of circulating glucose levels as observed in fish under non-stressed conditions.
在鱼类中,食物摄入会在应激条件下发生改变,而在像虹鳟鱼这样的鱼类模型中,食物摄入与葡萄糖感受器系统的活性有关。因此,我们旨在评估应激与虹鳟鱼葡萄糖感受器机制反应之间可能存在的相互作用。为此,我们通过腹腔注射,将虹鳟鱼置于正常血糖(对照)、低血糖(4mg.kg(-1)牛胰岛素)或高血糖(500mg.kg(-1)葡萄糖体重)条件下 5 天,分别在正常放养密度(NSD,10kg 鱼质量·m(-3))或高密度放养条件下(HSD,70kg 鱼质量·m(-3))。实验设计是合适的,因为在 NSD 下,低血糖和高血糖在鱼类中观察到,而在正常血糖鱼类中,HSD 诱导的应激相关参数变化与鱼类文献中报道的相似,如血浆中皮质醇和葡萄糖水平升高,肝脏中糖原水平降低。在 HSD 条件下,鱼类的食物摄入对血浆葡萄糖水平的变化没有反应,而在 NSD 条件下,当葡萄糖水平升高时,鱼类的食物摄入减少。此外,随着血浆葡萄糖水平的升高,参与肝脏葡萄糖感应的参数发生变化,如 Brockmann 体(BB)、下丘脑和后脑中的二羟丙酮磷酸(DHAP)和甘油醛-3-磷酸(GAP)水平,以及葡萄糖激酶(GK)、磷酸果糖激酶(PK)和葡萄糖磷酸酶(GPase)活性;BB 中的葡萄糖、DHAP 和 GAP 水平;下丘脑中的葡萄糖和 DHAP 水平,以及 GK 和 PK 活性;后脑中的糖原和 DHAP 水平,以及 GSase 活性。在 HSD 下,这些变化要么消失(血浆中的皮质醇水平;肝脏中的糖原和 GAP 水平,以及 GSase 和 FBPase 活性;BB 中的 GK 和 PK 活性;后脑中的 GK 和 PK 活性),要么改变(肝脏中的 GK 和 PK 活性)。这些变化首次在鱼类中表明,葡萄糖感应能力与应激之间存在相互作用。葡萄糖感受器系统活性的重新调整也与食物摄入的变化有关,导致鱼类无法通过食物摄入的变化来补偿循环葡萄糖水平的变化,就像在非应激条件下观察到的那样。