Streeter Chris C, Terhune Devin B, Whitfield Theodore H, Gruber Staci, Sarid-Segal Ofra, Silveri Marisa M, Tzilos Golfo, Afshar Maryam, Rouse Elizabeth D, Tian Hua, Renshaw Perry F, Ciraulo Domenic A, Yurgelun-Todd Deborah A
Division of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA.
Neuropsychopharmacology. 2008 Mar;33(4):827-36. doi: 10.1038/sj.npp.1301465. Epub 2007 Jun 13.
Treatment dropout is a problem of great prevalence and stands as an obstacle to recovery in cocaine-dependent (CD) individuals. Treatment attrition in CD individuals may result from impairments in cognitive control, which can be reliably measured by the Stroop color-word interference task. The present analyses contrasted baseline performance on the color-naming, word-reading, and interference subtests of the Stroop task in CD subjects who completed a cocaine treatment trial (completers: N=50) and those who dropped out of the trial before completion (non-completers: N=24). A logistic regression analysis was used to predict trial completion using three models with the following variables: the Stroop task subscale scores (Stroop model); the Hamilton depression rating scale (HDRS) scores (HDRS model); and both the Stroop task subscale scores and HDRS scores (Stroop and HDRS model). Each model was able to significantly predict group membership (completers vs non-completers) better than a model based on a simple constant (HDRS model p=0.02, Stroop model p=0.006, and Stroop and HDRS model p=0.003). Models using the Stroop preformed better than the HDRS model. These findings suggest that the Stroop task can be used to identify cocaine-dependent subjects at risk for treatment dropout. The Stroop task is a widely available, reliable, and valid instrument that can be easily employed to identify and tailor interventions of at risk individuals in the hope of improving treatment compliance.
治疗中断是一个普遍存在的问题,也是可卡因依赖(CD)个体康复的障碍。CD个体的治疗损耗可能源于认知控制受损,这可以通过斯特鲁普颜色-文字干扰任务可靠地测量。本分析对比了完成可卡因治疗试验的CD受试者(完成者:N = 50)和未完成试验即退出的受试者(未完成者:N = 24)在斯特鲁普任务的颜色命名、文字阅读和干扰子测试中的基线表现。使用逻辑回归分析,通过三个模型预测试验完成情况,模型变量如下:斯特鲁普任务子量表分数(斯特鲁普模型);汉密尔顿抑郁评定量表(HDRS)分数(HDRS模型);以及斯特鲁普任务子量表分数和HDRS分数(斯特鲁普和HDRS模型)。每个模型都能比基于简单常数的模型更显著地预测组成员身份(完成者与未完成者)(HDRS模型p = 0.02,斯特鲁普模型p = 0.006,斯特鲁普和HDRS模型p = 0.003)。使用斯特鲁普的模型比HDRS模型表现更好。这些发现表明,斯特鲁普任务可用于识别有治疗中断风险的可卡因依赖受试者。斯特鲁普任务是一种广泛可用、可靠且有效的工具,可轻松用于识别和定制针对高危个体的干预措施,以期提高治疗依从性。