Kawasumi Masaoki, Nghiem Paul
Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington 98109, USA.
J Invest Dermatol. 2007 Jul;127(7):1577-84. doi: 10.1038/sj.jid.5700853.
Chemical genetics employs diverse small-molecule compounds to elucidate biological processes in a manner analogous to the mutagenesis strategies at the core of classical genetics. Screening small-molecule libraries for compounds that induce a phenotype of interest represents the forward chemical genetic approach, whereas the reverse approach involves small molecules targeting a single protein. Here, we review key differences between the goals for small-molecule screening in industry versus academia, recent developments in high-throughput screening, and publicly available resources of compound collections, screening facilities, and databases. A particularly exciting outcome of a chemical genetic screen is the discovery of a previously unknown role for a protein in a pathway together with compounds that affect the function of that protein. In illustrative cases, such discoveries have led to progress toward therapeutic development and more commonly have increased the size of the small molecule "toolbox" available to the research community for the study of biological processes.
化学遗传学使用各种小分子化合物,以类似于经典遗传学核心诱变策略的方式阐明生物学过程。筛选小分子文库以寻找能诱导感兴趣表型的化合物代表了正向化学遗传学方法,而反向方法则涉及针对单一蛋白质的小分子。在这里,我们回顾了工业界与学术界小分子筛选目标的关键差异、高通量筛选的最新进展,以及化合物库、筛选设施和数据库等公开可用资源。化学遗传学筛选的一个特别令人兴奋的成果是发现蛋白质在某一途径中以前未知的作用,以及发现影响该蛋白质功能的化合物。在一些示例案例中,此类发现推动了治疗开发的进展,更常见的是增加了研究界可用于研究生物学过程的小分子“工具箱”的规模。