Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
Acc Chem Res. 2010 Aug 17;43(8):1103-14. doi: 10.1021/ar100014h.
A central aim of biological research is to elucidate the many roles of proteins in complex, dynamic living systems; the selective perturbation of protein function is an important tool in achieving this goal. Because chemical perturbations offer opportunities often not accessible with genetic methods, the development of small-molecule modulators of protein function is at the heart of chemical biology research. In this endeavor, the identification of biologically relevant starting points within the vast chemical space available for the design of compound collections is a particularly relevant, yet difficult, task. In this Account, we present our research aimed at linking chemical and biological space to define suitable starting points that guide the synthesis of compound collections with biological relevance. Both protein folds and natural product (NP) scaffolds are highly conserved in nature. Whereas different amino acid sequences can make up ligand-binding sites in proteins with highly similar fold types, differently substituted NPs characterized by particular scaffold classes often display diverse biological activities. Therefore, we hypothesized that (i) ligand-binding sites with similar ligand-sensing cores embedded in their folds would bind NPs with similar scaffolds and (ii) selectivity is ensured by variation of both amino acid side chains and NP substituents. To investigate this notion in compound library design, we developed an approach termed biology-oriented synthesis (BIOS). BIOS employs chem- and bioinformatic methods for mapping biologically relevant chemical space and protein space to generate hypotheses for compound collection design and synthesis. BIOS also provides hypotheses for potential bioactivity of compound library members. On the one hand, protein structure similarity clustering (PSSC) is used to identify ligand binding sites with high subfold similarity, that is, high structural similarity in their ligand-sensing cores. On the other hand, structural classification by scaffold trees (for example, structural classification of natural products or SCONP), when combined with software tools like "Scaffold Hunter", enables the hierarchical structural classification of small-molecule collections in tree-like arrangements, their annotation with bioactivity data, and the intuitive navigation of chemical space. Brachiation (in a manner analogous to tree-swinging primates) within the scaffold trees serves to identify new starting points for the design and synthesis of small-molecule libraries, and PSSC may be used to select potential protein targets. The introduction of chemical diversity in compound collections designed according to the logic of BIOS is essential for the frequent identification of small molecules with diverse biological activities. The continuing development of synthetic methodology, both on solid phase and in solution, enables the generation of focused small-molecule collections with sufficient substituent, stereochemical, and scaffold diversity to yield comparatively high hit rates in biochemical and biological screens from relatively small libraries. BIOS has also allowed the identification of new ligand classes for several different proteins and chemical probes for the study of protein function in cells.
一个生物学研究的核心目标是阐明蛋白质在复杂的动态生命系统中的许多作用;选择性地干扰蛋白质功能是实现这一目标的重要工具。由于化学干扰提供了遗传方法通常无法获得的机会,因此,开发蛋白质功能的小分子调节剂是化学生物学研究的核心。在这项努力中,在可用于设计化合物库的广阔化学空间中,确定生物相关的起点是一个特别相关但又困难的任务。在本报告中,我们介绍了旨在连接化学和生物空间以定义合适起点的研究工作,这些起点指导具有生物相关性的化合物库的合成。蛋白质折叠和天然产物(NP)支架在自然界中高度保守。虽然不同的氨基酸序列可以构成具有高度相似折叠类型的蛋白质中的配体结合位点,但具有特定支架类别的不同取代的 NPs 通常显示出不同的生物活性。因此,我们假设 (i) 嵌入其折叠中的具有相似配体感应核心的配体结合位点将与具有相似支架的 NPs 结合,以及 (ii) 选择性由氨基酸侧链和 NP 取代基的变化来保证。为了在化合物库设计中研究这一概念,我们开发了一种称为面向生物学的合成(BIOS)的方法。BIOS 采用化学和生物信息学方法来映射生物相关的化学空间和蛋白质空间,以生成化合物库设计和合成的假设。BIOS 还为化合物库成员的潜在生物活性提供假设。一方面,使用蛋白质结构相似性聚类(PSSC)来识别具有高亚折叠相似性的配体结合位点,即其配体感应核心具有高结构相似性。另一方面,通过支架树进行结构分类(例如,天然产物的结构分类或 SCONP),与“支架猎人”等软件工具结合使用,可对小分子集合进行树状排列的层次结构分类,对其进行生物活性数据的注释,并直观地导航化学空间。在支架树中进行的摆动(类似于树栖灵长类动物)可用于确定小分子文库设计和合成的新起点,并且 PSSC 可用于选择潜在的蛋白质靶标。根据 BIOS 的逻辑设计的化合物库中引入化学多样性对于经常鉴定具有不同生物活性的小分子至关重要。固相结合和溶液相结合的合成方法的不断发展,使得能够生成具有足够取代基、立体化学和支架多样性的聚焦小分子集合,从而从相对较小的库中产生较高的生化和生物筛选命中率。BIOS 还确定了几种不同蛋白质的新配体类,并鉴定了用于研究细胞中蛋白质功能的化学探针。