Iida Kazuko, Teng Jinfeng, Tada Tomoko, Saka Ayaka, Tamai Masumi, Izumi-Nakaseko Hiroko, Adachi-Akahane Satomi, Iida Hidetoshi
Biomembrane Signaling Project 2, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan.
J Biol Chem. 2007 Aug 31;282(35):25659-67. doi: 10.1074/jbc.M703757200. Epub 2007 Jun 14.
Voltage-gated Ca2+ channels (VGCCs) mediate the influx of Ca2+ that regulates many cellular events, and mutations in VGCC genes cause serious hereditary diseases in mammals. The yeast Saccharomyces cerevisiae has only one gene encoding the putative pore-forming alpha1 subunit of VGCC, CCH1. Here, we identify a cch1 allele producing a completely nonfunctional Cch1 protein with a Gly1265 to Glu substitution present in the domain III S2-S3 cytoplasmic linker. Comparison of amino acid sequences of this linker among 58 VGCC alpha1 subunits from 17 species reveals that a Gly residue whose position corresponds to that of the Cch1 Gly1265 is completely conserved from yeasts to humans. Systematic amino acid substitution analysis using 10 amino acids with different chemical and structural properties indicates that the Gly1265 is essential for Cch1 function because of the smallest residue volume. Replacement of the Gly959 residue of a rat brain Cav1.2 alpha1 subunit (rbCII), positionally corresponding to the yeast Cch1 Gly1265, with Glu, Ser, Lys, or Ala results in the loss of Ba2+ currents, as revealed by the patch clamp method. These results suggest that the Gly residue in the domain III S2-S3 linker is functionally indispensable from yeasts to mammals. Because the Gly residue has never been studied in any VGCC, these findings provide new insights into the structure-function relationships of VGCCs.
电压门控性Ca2+通道(VGCCs)介导Ca2+内流,从而调节许多细胞活动,并且VGCC基因的突变会在哺乳动物中导致严重的遗传性疾病。酿酒酵母仅有一种编码VGCC假定孔形成α1亚基的基因,即CCH1。在此,我们鉴定出一个cch1等位基因,其产生一种完全无功能的Cch1蛋白,该蛋白在结构域III的S2-S3胞质连接子中存在甘氨酸1265突变为谷氨酸的情况。对来自17个物种的58个VGCC α1亚基的该连接子氨基酸序列进行比较后发现,其位置与Cch1甘氨酸1265相对应的甘氨酸残基从酵母到人类都完全保守。使用具有不同化学和结构特性的10种氨基酸进行的系统性氨基酸取代分析表明,由于残基体积最小,甘氨酸1265对Cch1功能至关重要。用谷氨酸、丝氨酸赖氨酸或丙氨酸取代大鼠脑Cav1.2 α1亚基(rbCII)中位置与酵母Cch1甘氨酸1265相对应的甘氨酸959残基,膜片钳法显示会导致Ba2+电流丧失。这些结果表明,从酵母到哺乳动物,结构域III S2-S3连接子中的甘氨酸残基在功能上是不可或缺的。由于从未在任何VGCC中对甘氨酸残基进行过研究,这些发现为VGCC的结构-功能关系提供了新的见解。