Suppr超能文献

高压氧疗对脑血流动力学、血红蛋白氧合及线粒体烟酰胺腺嘌呤二核苷酸的影响。

Effect of hyperbaric oxygenation on brain hemodynamics, hemoglobin oxygenation and mitochondrial NADH.

作者信息

Meirovithz Elhanan, Sonn Judith, Mayevsky Avraham

机构信息

The Mina & Everard Goodman Faculty of Life Sciences and the Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel.

出版信息

Brain Res Rev. 2007 Jun;54(2):294-304. doi: 10.1016/j.brainresrev.2007.04.004. Epub 2007 Apr 27.

Abstract

To determine the HbO(2) oxygenation level at the microcirculation, we used the hyperbaric chamber. The effects of hyperbaric oxygenation (HBO) were tested on vitality parameters in the brain at various pressures. Microcirculatory hemoglobin oxygen saturation (HbO(2)), cerebral blood flow (CBF) and mitochondrial NADH redox state were assessed in the brain of awake restrained rats using a fiber optic probe. The hypothesis was that HBO may lead to maximal level in microcirculatory HbO(2) due to the amount of the dissolved O(2) to provide the O(2) consumed by the brain, and therefore no O(2) will be dissociated from the HbO(2). Awake rats were exposed progressively to 15 min normobaric hyperoxia, 100% O(2) (NH) and to 90 min hyperbaric hyperoxia (HH) from 1.75 to 6.0 absolute atmospheres (ATA). NH and HH gradually decreased the blood volume measured by tissue reflectance and NADH but increased HbO(2) in relation to pO(2) in the chamber up to a nearly maximum effect at 2.5 ATA. Two possible approximations were found to describe the relationship between NADH and HbO(2): linear or logarithmic. These findings show that the increase in brain microcirculatory HbO(2) is due to an increase in O(2) supply by dissolved O(2), reaching a maximum at 2.5 ATA. NADH is oxidized (decreased signal) in parallel to the HbO(2) increase, showing maximal tissue oxygenation and cellular mitochondrial NADH oxidation at 2.5 ATA. In conclusion, in the normoxic brain, the level of microcirculatory HbO(2) is about 50% as compared to the maximal level recorded at 2.5 ATA and the minimal level measured during anoxia.

摘要

为了确定微循环处的血红蛋白氧合水平(HbO₂),我们使用了高压舱。在不同压力下测试了高压氧合(HBO)对大脑活力参数的影响。使用光纤探头评估清醒束缚大鼠大脑中的微循环血红蛋白氧饱和度(HbO₂)、脑血流量(CBF)和线粒体NADH氧化还原状态。我们的假设是,由于溶解氧的量能够提供大脑消耗的氧气,HBO可能会使微循环中的HbO₂达到最高水平,因此不会有氧气从HbO₂中解离出来。将清醒大鼠逐渐暴露于15分钟的常压高氧环境(100%氧气,NH)以及90分钟的高压高氧环境(HH),压力范围从1.75至6.0绝对大气压(ATA)。NH和HH逐渐降低了通过组织反射率和NADH测量的血容量,但与舱内的氧分压相关,HbO₂增加,在2.5 ATA时达到几乎最大效应。发现了两种可能的近似方法来描述NADH与HbO₂之间的关系:线性或对数关系。这些发现表明,大脑微循环中HbO₂的增加是由于溶解氧供应的增加,在2.5 ATA时达到最大值。NADH随着HbO₂的增加而被氧化(信号降低),表明在2.5 ATA时组织氧合和细胞线粒体NADH氧化达到最大值。总之,在常氧大脑中,微循环HbO₂水平约为在2.5 ATA记录的最高水平与缺氧期间测量的最低水平的50%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验