Suppr超能文献

血管活性肠肽与哺乳动物昼夜节律系统。

Vasoactive intestinal peptide and the mammalian circadian system.

作者信息

Vosko Andrew M, Schroeder Analyne, Loh Dawn H, Colwell Christopher S

机构信息

Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, University of California--Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024-1759, USA.

出版信息

Gen Comp Endocrinol. 2007 Jun-Jul;152(2-3):165-75. doi: 10.1016/j.ygcen.2007.04.018. Epub 2007 May 26.

Abstract

In mammals, the circadian oscillators that drive daily behavioral and endocrine rhythms are located in the hypothalamic suprachiasmatic nucleus (SCN). While the SCN is anatomically well-situated to receive and transmit temporal cues to the rest of the brain and periphery, there are many holes in our understanding of how this temporal regulation occurs. Unanswered questions include how cell autonomous circadian oscillations within the SCN remain synchronized to each other as well as communicate temporal information to downstream targets. In recent years, it has become clear that neuropeptides are critically involved in circadian timekeeping. One such neuropeptide, vasoactive intestinal peptide (VIP), defines a cell population within the SCN and is likely used as a signaling molecule by these neurons. Converging lines of evidence suggest that the loss of VIP or its receptor has a major influence on the ability of the SCN neurons to generate circadian oscillations as well as synchronize these cellular oscillations. VIP, acting through the VPAC(2) receptor, exerts these effects in the SCN by activating intracellular signaling pathways and, consequently, modulating synaptic transmission and intrinsic membrane currents. Anatomical evidence suggests that these VIP expressing neurons connect both directly and indirectly to endocrine and other output targets. Striking similarities exist between the role of VIP in mammals and the role of Pigment Dispersing Factor (PDF), a functionally related neuropeptide, in the Drosophila circadian system. Work in both mammals and insects suggests that further research into neuropeptide function is necessary to understand how circadian oscillators work as a coordinated system to impose a temporal structure on physiological processes within the organism.

摘要

在哺乳动物中,驱动日常行为和内分泌节律的昼夜节律振荡器位于下丘脑视交叉上核(SCN)。虽然SCN在解剖学上位置优越,能够接收并向大脑其他部位及外周传递时间线索,但我们对这种时间调节如何发生的理解仍存在许多漏洞。未解决的问题包括SCN内的细胞自主昼夜节律振荡如何彼此保持同步,以及如何将时间信息传递给下游靶点。近年来,越来越清楚的是神经肽在昼夜节律计时中起着关键作用。一种这样的神经肽,血管活性肠肽(VIP),定义了SCN内的一群细胞,并且很可能被这些神经元用作信号分子。越来越多的证据表明,VIP或其受体的缺失对SCN神经元产生昼夜节律振荡以及使这些细胞振荡同步的能力有重大影响。VIP通过VPAC(2)受体发挥作用,通过激活细胞内信号通路,进而调节突触传递和内在膜电流,在SCN中发挥这些作用。解剖学证据表明,这些表达VIP的神经元直接和间接地连接到内分泌和其他输出靶点。VIP在哺乳动物中的作用与色素分散因子(PDF,一种功能相关的神经肽)在果蝇昼夜节律系统中的作用之间存在惊人的相似之处。哺乳动物和昆虫的研究工作都表明,有必要进一步研究神经肽的功能,以了解昼夜节律振荡器如何作为一个协调系统发挥作用,从而在生物体内的生理过程中赋予时间结构。

相似文献

1
Vasoactive intestinal peptide and the mammalian circadian system.
Gen Comp Endocrinol. 2007 Jun-Jul;152(2-3):165-75. doi: 10.1016/j.ygcen.2007.04.018. Epub 2007 May 26.
2
Ontogeny of Circadian Rhythms and Synchrony in the Suprachiasmatic Nucleus.
J Neurosci. 2018 Feb 7;38(6):1326-1334. doi: 10.1523/JNEUROSCI.2006-17.2017. Epub 2017 Oct 20.
4
Vasoactive intestinal polypeptide (VIP) phase-shifts the rat suprachiasmatic nucleus clock in vitro.
Eur J Neurosci. 2001 Feb;13(4):839-43. doi: 10.1046/j.0953-816x.2000.01437.x.
5
SCN VIP Neurons Are Essential for Normal Light-Mediated Resetting of the Circadian System.
J Neurosci. 2018 Sep 12;38(37):7986-7995. doi: 10.1523/JNEUROSCI.1322-18.2018. Epub 2018 Aug 6.
6
The Cell-Autonomous Clock of VIP Receptor VPAC2 Cells Regulates Period and Coherence of Circadian Behavior.
J Neurosci. 2021 Jan 20;41(3):502-512. doi: 10.1523/JNEUROSCI.2015-20.2020. Epub 2020 Nov 24.
9
Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons.
Nat Neurosci. 2005 Apr;8(4):476-83. doi: 10.1038/nn1419. Epub 2005 Mar 6.

引用本文的文献

1
Clock genes in pancreatic disease progression: from circadian regulation to dysfunction.
Ann Med. 2025 Dec;57(1):2528449. doi: 10.1080/07853890.2025.2528449. Epub 2025 Jul 13.
2
Neuromodulation of Swarming Behavior in : Insights into the Conserved role of Calsyntenins.
bioRxiv. 2025 Jul 6:2025.07.06.663344. doi: 10.1101/2025.07.06.663344.
3
Decoding Neuropeptide Complexity: Advancing Neurobiological Insights from Invertebrates to Vertebrates through Evolutionary Perspectives.
ACS Chem Neurosci. 2025 May 7;16(9):1662-1679. doi: 10.1021/acschemneuro.5c00053. Epub 2025 Apr 22.
4
Pigment-dispersing factor neuropeptides act as multifunctional hormones and modulators in tardigrades.
Open Biol. 2025 Mar;15(3):240242. doi: 10.1098/rsob.240242. Epub 2025 Mar 5.
5
Suprachiasmatic nucleus VIPergic fibers show a circadian rhythm of expansion and retraction.
Curr Biol. 2024 Sep 9;34(17):4056-4061.e2. doi: 10.1016/j.cub.2024.07.051. Epub 2024 Aug 9.
6
One seasonal clock fits all?
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Jul;210(4):641-647. doi: 10.1007/s00359-023-01680-4. Epub 2023 Nov 10.
7
On the origin and evolution of the dual oscillator model underlying the photoperiodic clockwork in the suprachiasmatic nucleus.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Jul;210(4):503-511. doi: 10.1007/s00359-023-01659-1. Epub 2023 Jul 23.
9
Developmental patterning of peptide transcription in the central circadian clock in both sexes.
Front Neurosci. 2023 May 19;17:1177458. doi: 10.3389/fnins.2023.1177458. eCollection 2023.
10
Somatostatin regulates central clock function and circadian responses to light.
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2216820120. doi: 10.1073/pnas.2216820120. Epub 2023 Apr 25.

本文引用的文献

1
Impaired clock output by altered connectivity in the circadian network.
Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5650-5. doi: 10.1073/pnas.0608260104. Epub 2007 Mar 16.
2
Disrupted neuronal activity rhythms in the suprachiasmatic nuclei of vasoactive intestinal polypeptide-deficient mice.
J Neurophysiol. 2007 Mar;97(3):2553-8. doi: 10.1152/jn.01206.2006. Epub 2006 Dec 6.
3
GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons.
Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19188-93. doi: 10.1073/pnas.0607466103. Epub 2006 Nov 30.
4
SCN outputs and the hypothalamic balance of life.
J Biol Rhythms. 2006 Dec;21(6):458-69. doi: 10.1177/0748730406293854.
7
The regulation of neuroendocrine function: Timing is everything.
Horm Behav. 2006 May;49(5):557-74. doi: 10.1016/j.yhbeh.2005.12.011. Epub 2006 Feb 21.
9
Dendritic peptide release and peptide-dependent behaviours.
Nat Rev Neurosci. 2006 Feb;7(2):126-36. doi: 10.1038/nrn1845.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验