Suppr超能文献

病变的T(2)弛豫时间和体积可预测恶性乳腺病变对新辅助化疗的反应。

Lesion T(2) relaxation times and volumes predict the response of malignant breast lesions to neoadjuvant chemotherapy.

作者信息

Tan P Clara, Pickles Martin D, Lowry Martin, Manton David J, Turnbull Lindsay W

机构信息

Centre for Magnetic Resonance Investigations, University of Hull, Hull Royal Infirmary, HU3 2JZ, Hull, UK.

出版信息

Magn Reson Imaging. 2008 Jan;26(1):26-34. doi: 10.1016/j.mri.2007.04.002. Epub 2007 Jun 15.

Abstract

The aim of this study was to investigate the utility of the water T(2) values of malignant breast lesions in predicting response after the first and second cycles of neoadjuvant chemotherapy (NAC), both alone and in combination with lesion volumes. Thirty-five patients were scanned before the commencement of chemotherapy and again after the first, second and final treatment cycles. Two methods of obtaining lesion T(2) were used: imaging, where a series of T(2)-weighted images was acquired (T(R)/T(E)=1000/30, 60, 90 and 120 ms), and spectroscopy, where the T(2) value of unsuppressed water signal was determined with a multiecho sequence (T(R)=1.5 s; initial T(E)=35 ms; 64 steps of 2.5 ms; 2 unsuppressed acquisitions per T(E)). Lesion volumes were computed from contrast-enhanced 3D fat-suppressed images. The study found that, using the imaging method of obtaining T(2), the ratio of the product of lesion T(2) and volume after the second cycle of NAC to pretreatment value is a good predictor of ultimate lesion response, defined as a > or =65% reduction in tumor volume after the final treatment cycle, with positive and negative predictive values of 95.5% and 84.6%, respectively.

摘要

本研究的目的是探讨乳腺恶性病变的水T(2)值在预测新辅助化疗(NAC)第一周期和第二周期后反应方面的效用,单独使用以及与病变体积联合使用时的情况。35例患者在化疗开始前进行扫描,并在第一、第二和最后治疗周期后再次扫描。采用了两种获取病变T(2)的方法:成像,即采集一系列T(2)加权图像(T(R)/T(E)=1000/30、60、90和120毫秒);以及光谱分析,即使用多回波序列(T(R)=1.5秒;初始T(E)=35毫秒;64步,每步2.5毫秒;每个T(E)有2次未抑制采集)测定未抑制水信号的T(2)值。病变体积通过对比增强三维脂肪抑制图像计算得出。研究发现,采用获取T(2)的成像方法时,NAC第二周期后病变T(2)与体积的乘积与治疗前值的比值是最终病变反应的良好预测指标,最终病变反应定义为最后治疗周期后肿瘤体积缩小≥65%,其阳性预测值和阴性预测值分别为95.5%和84.6%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验