Suppr超能文献

Using Synthetic MRI and Radiomics to Predict Treatment Response in Triple-Negative Breast Cancer.

作者信息

Houser Margaret, Rapelyea Jocelyn A

机构信息

From the Department of Radiology, The George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Ave NW, Washington, DC 20037.

出版信息

Radiol Imaging Cancer. 2023 Jul;5(4):e230095. doi: 10.1148/rycan.230095.

Abstract
摘要

相似文献

1
Using Synthetic MRI and Radiomics to Predict Treatment Response in Triple-Negative Breast Cancer.
Radiol Imaging Cancer. 2023 Jul;5(4):e230095. doi: 10.1148/rycan.230095.
8
Radiogenomic analysis reveals tumor heterogeneity of triple-negative breast cancer.
Cell Rep Med. 2022 Jul 19;3(7):100694. doi: 10.1016/j.xcrm.2022.100694.
10
MRI-based radiomics for the diagnosis of triple-negative breast cancer: a meta-analysis.
Clin Radiol. 2022 Sep;77(9):655-663. doi: 10.1016/j.crad.2022.04.015. Epub 2022 May 28.

引用本文的文献

1
A 20-feature radiomic signature of triple-negative breast cancer identifies patients at high risk of death.
NPJ Breast Cancer. 2025 Jul 26;11(1):79. doi: 10.1038/s41523-025-00790-3.

本文引用的文献

3
Deep Learning to Simulate Contrast-enhanced Breast MRI of Invasive Breast Cancer.
Radiology. 2023 Mar;306(3):e213199. doi: 10.1148/radiol.213199. Epub 2022 Nov 15.
5
Investigating the Image Quality and Utility of Synthetic MRI in the Breast.
Magn Reson Med Sci. 2021 Dec 1;20(4):431-438. doi: 10.2463/mrms.mp.2020-0132. Epub 2021 Feb 2.
7
Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis.
Clin Cancer Res. 2020 Jun 15;26(12):2838-2848. doi: 10.1158/1078-0432.CCR-19-3492. Epub 2020 Feb 11.
10
Lesion T(2) relaxation times and volumes predict the response of malignant breast lesions to neoadjuvant chemotherapy.
Magn Reson Imaging. 2008 Jan;26(1):26-34. doi: 10.1016/j.mri.2007.04.002. Epub 2007 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验