Suppr超能文献

基于大米的黏膜疫苗作为冷链和无针接种的全球策略。

Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination.

作者信息

Nochi Tomonori, Takagi Hidenori, Yuki Yoshikazu, Yang Lijun, Masumura Takehiro, Mejima Mio, Nakanishi Ushio, Matsumura Akiko, Uozumi Akihiro, Hiroi Takachika, Morita Shigeto, Tanaka Kunisuke, Takaiwa Fumio, Kiyono Hiroshi

机构信息

*Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.

出版信息

Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10986-91. doi: 10.1073/pnas.0703766104. Epub 2007 Jun 15.

Abstract

Capable of inducing antigen-specific immune responses in both systemic and mucosal compartments without the use of syringe and needle, mucosal vaccination is considered ideal for the global control of infectious diseases. In this study, we developed a rice-based oral vaccine expressing cholera toxin B subunit (CTB) under the control of the endosperm-specific expression promoter 2.3-kb glutelin GluB-1 with codon usage optimization for expression in rice seed. An average of 30 mug of CTB per seed was stored in the protein bodies, which are storage organelles in rice. When mucosally fed, rice seeds expressing CTB were taken up by the M cells covering the Peyer's patches and induced CTB-specific serum IgG and mucosal IgA antibodies with neutralizing activity. When expressed in rice, CTB was protected from pepsin digestion in vitro. Rice-expressed CTB also remained stable and thus maintained immunogenicity at room temperature for >1.5 years, meaning that antigen-specific mucosal immune responses were induced at much lower doses than were necessary with purified recombinant CTB. Because they require neither refrigeration (cold-chain management) nor a needle, these rice-based mucosal vaccines offer a highly practical and cost-effective strategy for orally vaccinating large populations against mucosal infections, including those that may result from an act of bioterrorism.

摘要

黏膜疫苗能够在不使用注射器和针头的情况下,在全身和黏膜部位诱导抗原特异性免疫反应,被认为是全球控制传染病的理想选择。在本研究中,我们开发了一种基于水稻的口服疫苗,该疫苗在胚乳特异性表达启动子2.3 kb谷蛋白GluB-1的控制下表达霍乱毒素B亚基(CTB),并对密码子使用进行了优化以在水稻种子中表达。每个种子平均有30微克的CTB储存在蛋白体中,蛋白体是水稻中的储存细胞器。当经黏膜喂食时,表达CTB的水稻种子被覆盖派尔集合淋巴结的M细胞摄取,并诱导产生具有中和活性的CTB特异性血清IgG和黏膜IgA抗体。当在水稻中表达时,CTB在体外可免受胃蛋白酶消化。水稻表达的CTB也保持稳定,因此在室温下>1.5年仍保持免疫原性,这意味着诱导抗原特异性黏膜免疫反应所需的剂量比纯化的重组CTB低得多。由于这些基于水稻的黏膜疫苗既不需要冷藏(冷链管理)也不需要针头,它们为大规模人群口服接种预防黏膜感染(包括可能由生物恐怖主义行为导致的感染)提供了一种高度实用且具有成本效益的策略。

相似文献

1
Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination.
Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10986-91. doi: 10.1073/pnas.0703766104. Epub 2007 Jun 15.
2
[MucoRice: development of rice-based oral vaccine].
Nihon Rinsho Meneki Gakkai Kaishi. 2008 Oct;31(5):369-74. doi: 10.2177/jsci.31.369.
6
Oral rice-based vaccine induces passive and active immunity against enterotoxigenic E. coli-mediated diarrhea in pigs.
Vaccine. 2015 Sep 22;33(39):5204-11. doi: 10.1016/j.vaccine.2015.07.074. Epub 2015 Aug 4.
8
Oral MucoRice expressing double-mutant cholera toxin A and B subunits induces toxin-specific neutralising immunity.
Vaccine. 2009 Oct 9;27(43):5982-8. doi: 10.1016/j.vaccine.2009.07.071. Epub 2009 Aug 7.
9
Novel transgenic rice-based vaccines.
Arch Immunol Ther Exp (Warsz). 2015 Apr;63(2):87-99. doi: 10.1007/s00005-014-0303-0. Epub 2014 Jul 16.

引用本文的文献

1
The challenges of co-extraction of animal and plant proteins from transgenic plants for use in food and feed.
Front Plant Sci. 2025 Aug 26;16:1626856. doi: 10.3389/fpls.2025.1626856. eCollection 2025.
2
Recent development of oral vaccines (Review).
Exp Ther Med. 2024 Mar 22;27(5):223. doi: 10.3892/etm.2024.12511. eCollection 2024 May.
3
MucoRice-CTB line 19A, a new marker-free transgenic rice-based cholera vaccine produced in an LED-based hydroponic system.
Front Plant Sci. 2024 Mar 15;15:1342662. doi: 10.3389/fpls.2024.1342662. eCollection 2024.
4
Tomato-made edible COVID-19 vaccine TOMAVAC induces neutralizing IgGs in the blood sera of mice and humans.
Front Nutr. 2024 Jan 8;10:1275307. doi: 10.3389/fnut.2023.1275307. eCollection 2023.
5
, classification, pathogenesis, immune response, and trends in vaccine development.
Front Med (Lausanne). 2023 May 5;10:1155751. doi: 10.3389/fmed.2023.1155751. eCollection 2023.
7
Evaluation of protein production in rice seedlings under dark conditions.
Sci Rep. 2022 May 11;12(1):7759. doi: 10.1038/s41598-022-11672-0.
9
Development of spirulina for the manufacture and oral delivery of protein therapeutics.
Nat Biotechnol. 2022 Jun;40(6):956-964. doi: 10.1038/s41587-022-01249-7. Epub 2022 Mar 21.
10
Improving Protein Quantity and Quality-The Next Level of Plant Molecular Farming.
Int J Mol Sci. 2022 Jan 25;23(3):1326. doi: 10.3390/ijms23031326.

本文引用的文献

1
Purification and characterization of acid phosphatase in aleurone particles of rice grains.
Plant Cell Physiol. 1980 Dec;21(8):1449-60. doi: 10.1093/pcp/21.8.1449.
2
3
Biosynthesis of storage proteins in developing rice seeds.
Plant Physiol. 1982 Oct;70(4):1094-100. doi: 10.1104/pp.70.4.1094.
4
Needle-free vaccine delivery.
Adv Drug Deliv Rev. 2006 Apr 20;58(1):68-89. doi: 10.1016/j.addr.2005.12.003. Epub 2006 Mar 24.
5
Mucosal vaccines: the promise and the challenge.
Nat Rev Immunol. 2006 Feb;6(2):148-58. doi: 10.1038/nri1777.
6
A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibition of Th2-mediated IgE responses.
Proc Natl Acad Sci U S A. 2005 Nov 29;102(48):17525-30. doi: 10.1073/pnas.0503428102. Epub 2005 Nov 8.
7
Mucosal immunity and vaccines.
Nat Med. 2005 Apr;11(4 Suppl):S45-53. doi: 10.1038/nm1213.
8
NALT- versus Peyer's-patch-mediated mucosal immunity.
Nat Rev Immunol. 2004 Sep;4(9):699-710. doi: 10.1038/nri1439.
9
Role of gut-associated lymphoreticular tissues in antigen-specific intestinal IgA immunity.
J Immunol. 2004 Jul 15;173(2):762-9. doi: 10.4049/jimmunol.173.2.762.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验