Chen Zhaolin, Zhang Jingxin, Pang Khee K
Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC, Australia.
Comput Med Imaging Graph. 2007 Sep;31(6):458-68. doi: 10.1016/j.compmedimag.2007.04.005. Epub 2007 Jun 18.
Dynamic magnetic resonance imaging (MRI) acquires a sequence of images for the visualization of the temporal variation of tissue or organs. Keyhole methods such as Fourier keyhole (FK) and keyhole SVD (KSVD) are the most popular methods for image reconstruction in dynamic MRI. This paper provides a class of adaptive keyhole methods, called adaptive FK (AFK) and adaptive KSVD (AKSVD), for dynamic MRI reconstruction. The proposed methods are based on the conventional Fourier encoding and SVD encoding schemes. Instead of the conventional keyhole methods' duplication of un-acquired data from the reference images, the proposed methods use a temporal model to depict the inter-frame dynamic changes and to estimate the un-acquired data in each successive frame. Because the model is online identified from the acquired data, the proposed methods do not require the pre-imaging process, the navigator signals, and any prior knowledge of the imaged objects. Furthermore, the new methods use the conventional keyhole encoding schemes without the bias to any particular object characters, and the temporal model for updating information is in the general form of AR process without the preference to any particular motion types. Hence, the proposed methods are designed as a generic approach to dynamic MRI, other than for any specific class of objects. Studies on dynamic MRI data set show that the new methods can produce images with much lower reconstruction error than the conventional FK and KSVD.
动态磁共振成像(MRI)获取一系列图像以可视化组织或器官的时间变化。诸如傅里叶钥匙孔(FK)和钥匙孔奇异值分解(KSVD)等钥匙孔方法是动态MRI中最常用的图像重建方法。本文提出了一类自适应钥匙孔方法,称为自适应FK(AFK)和自适应KSVD(AKSVD),用于动态MRI重建。所提出的方法基于传统的傅里叶编码和奇异值分解编码方案。与传统钥匙孔方法从参考图像复制未采集数据不同,所提出的方法使用时间模型来描述帧间动态变化并估计每个连续帧中的未采集数据。由于该模型是根据采集的数据在线识别的,因此所提出的方法不需要预成像过程、导航信号以及成像对象的任何先验知识。此外,新方法使用传统的钥匙孔编码方案,对任何特定对象特征均无偏差,并且用于更新信息的时间模型采用自回归过程的一般形式,对任何特定运动类型均无偏好。因此,所提出的方法被设计为一种通用的动态MRI方法,而非针对任何特定类别的对象。对动态MRI数据集的研究表明,新方法能够生成重建误差比传统FK和KSVD低得多的图像。