Melbourne A, Atkinson D, White M J, Collins D, Leach M, Hawkes D
Centre for Medical Image Computing, University College London, London, UK.
Phys Med Biol. 2007 Sep 7;52(17):5147-56. doi: 10.1088/0031-9155/52/17/003. Epub 2007 Aug 7.
Registration of dynamic contrast-enhanced magnetic resonance images (DCE-MRI) of soft tissue is difficult. Conventional registration cost functions that depend on information content are compromised by the changing intensity profile, leading to misregistration. We present a new data-driven model of uptake patterns formed from a principal components analysis (PCA) of time-series data, avoiding the need for a physiological model. We term this process progressive principal component registration (PPCR). Registration is performed repeatedly to an artificial time series of target images generated using the principal components of the current best-registered time-series data. The aim is to produce a dataset that has had random motion artefacts removed but long-term contrast enhancement implicitly preserved. The procedure is tested on 22 DCE-MRI datasets of the liver. Preliminary assessment of the images is by expert observer comparison with registration to the first image in the sequence. The PPCR is preferred in all cases where a preference exists. The method requires neither segmentation nor a pharmacokinetic uptake model and can allow successful registration in the presence of contrast enhancement.
软组织动态对比增强磁共振成像(DCE-MRI)的配准很困难。依赖信息内容的传统配准成本函数会因强度分布的变化而受到影响,从而导致配准错误。我们提出了一种新的数据驱动的摄取模式模型,该模型由时间序列数据的主成分分析(PCA)形成,无需生理模型。我们将此过程称为渐进主成分配准(PPCR)。反复对使用当前最佳配准时间序列数据的主成分生成的目标图像的人工时间序列进行配准。目的是生成一个去除了随机运动伪影但隐含保留了长期对比增强的数据集。该程序在22个肝脏DCE-MRI数据集上进行了测试。图像的初步评估是由专家观察者与序列中第一张图像的配准进行比较。在所有存在偏好的情况下,PPCR都是首选。该方法既不需要分割也不需要药代动力学摄取模型,并且在存在对比增强的情况下也能成功配准。