Suppr超能文献

Treatment monitoring and thermometry for therapeutic focused ultrasound.

作者信息

Rivens I, Shaw A, Civale J, Morris H

机构信息

Joint Department of Physics, Institute of Cancer Research: Royal Marsden NHS Foundation Trust, Sutton, UK.

出版信息

Int J Hyperthermia. 2007 Mar;23(2):121-39. doi: 10.1080/02656730701207842.

Abstract

Therapeutic ultrasound is currently enjoying increasingly widespread clinical use especially for the treatment of cancer of the prostate, liver, kidney, breast, pancreas and bone, as well as for the treatment of uterine fibroids. The optimum method of treatment delivery varies between anatomical sites, but in all cases monitoring of the treatment is crucial if extensive clinical acceptance is to be achieved. Monitoring not only provides the operating clinician with information relating to the effectiveness of treatment, but can also provide an early alert to the onset of adverse effects in normal tissue. This paper reviews invasive and non-invasive monitoring methods that have been applied to assess the extent of treatment during the delivery of therapeutic ultrasound in the laboratory and clinic (follow-up after treatment is not reviewed in detail). The monitoring of temperature and, importantly, the way in which this measurement can be used to estimate the delivered thermal dose, is dealt with as a separate special case. Already therapeutic ultrasound has reached a stage of development where it is possible to attempt real-time feedback during exposure in order to optimize each and every delivery of ultrasound energy. To date, data from MR imaging have shown better agreement with the size of regions of damage than those from diagnostic ultrasound, but novel ultrasonic techniques may redress this balance. Whilst MR currently offers the best method for non-invasive temperature measurement, the ultrasound techniques under development, which could potentially offer more rapid visualisation of results, are discussed.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验