Suppr超能文献

使用有丝分裂标记物抗磷酸化组蛋白H3检测有丝分裂指数在脑膜瘤中的预后意义。

Prognostic significance of the mitotic index using the mitosis marker anti-phosphohistone H3 in meningiomas.

作者信息

Kim Yoo-Jin, Ketter Ralf, Steudel Wolf-Ingo, Feiden Wolfgang

机构信息

Institute of Neuropathology, Saarland University, School of Medicine, Homburg/Saar, Germany.

出版信息

Am J Clin Pathol. 2007 Jul;128(1):118-25. doi: 10.1309/HXUNAG34B3CEFDU8.

Abstract

Mitotic activity is one of the most reliable prognostic factors in meningiomas. The identification of mitotic figures (MFs) and the areas of highest mitotic activity in H&E-stained slides is a tedious and subjective task. Therefore, we compared the results from immunostaining for the mitosis-specific antibody anti-phosphohistone H3 (PHH3 mitotic index [MI]) with standard MF counts (H&E MI) and the Ki-67 labeling index (LI). The relationship between these proliferation indices and prognosis was investigated in a retrospective series of 265 meningiomas. The PHH3 staining method yielded greater sensitivity in the detection of MFs and facilitated MF counting. Mitotic thresholds of H&E MI of 4 or more per 10 high-power fields (HPF) and PHH3 MI of 6 or more per 10 HPF were found as the most appropriate prognostic cutoff values for the prediction of recurrence-free survival. All 3 proliferation indices were univariately associated with recurrences and deaths. In contrast with the Ki-67 LI, H&E MI and PHH3 MI also remained as independent predictors in the multivariate Cox hazards modeling (P = .0007 and P = .0004, respectively).

摘要

有丝分裂活性是脑膜瘤最可靠的预后因素之一。在苏木精-伊红(H&E)染色切片中识别有丝分裂象(MFs)以及有丝分裂活性最高的区域是一项繁琐且主观的任务。因此,我们将有丝分裂特异性抗体抗磷酸化组蛋白H3免疫染色结果(PHH3有丝分裂指数[MI])与标准MF计数(H&E MI)和Ki-67标记指数(LI)进行了比较。在一项对265例脑膜瘤的回顾性研究中,调查了这些增殖指数与预后之间的关系。PHH3染色方法在检测MFs方面具有更高的敏感性,并便于MF计数。发现每10个高倍视野(HPF)中H&E MI为4或更多以及每10个HPF中PHH3 MI为6或更多的有丝分裂阈值是预测无复发生存的最合适预后临界值。所有3个增殖指数在单因素分析中均与复发和死亡相关。与Ki-67 LI不同,H&E MI和PHH3 MI在多因素Cox风险模型中也仍然是独立的预测因素(分别为P = 0.0007和P = 0.0004)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验