Suppr超能文献

基于GPCR结构的虚拟筛选方法用于寻找CB2拮抗剂。

GPCR structure-based virtual screening approach for CB2 antagonist search.

作者信息

Chen Jian-Zhong, Wang Junmei, Xie Xiang-Qun

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh Molecular Library Screening Center, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.

出版信息

J Chem Inf Model. 2007 Jul-Aug;47(4):1626-37. doi: 10.1021/ci7000814. Epub 2007 Jun 20.

Abstract

The potential for therapeutic specificity in regulating diseases has made cannabinoid (CB) receptors one of the most important G-protein-coupled receptor (GPCR) targets in search for new drugs. Considering the lack of related 3D experimental structures, we have established a structure-based virtual screening protocol to search for CB2 bioactive antagonists based on the 3D CB2 homology structure model. However, the existing homology-predicted 3D models often deviate from the native structure and therefore may incorrectly bias the in silico design. To overcome this problem, we have developed a 3D testing database query algorithm to examine the constructed 3D CB2 receptor structure model as well as the predicted binding pocket. In the present study, an antagonist-bound CB2 receptor complex model was initially generated using flexible docking simulation and then further optimized by molecular dynamic and mechanical (MD/MM) calculations. The refined 3D structural model of the CB2-ligand complex was then inspected by exploring the interactions between the receptor and ligands in order to predict the potential CB2 binding pocket for its antagonist. The ligand-receptor complex model and the predicted antagonist binding pockets were further processed and validated by FlexX-Pharm docking against a testing compound database that contains known antagonists. Furthermore, a consensus scoring (CScore) function algorithm was established to rank the binding interaction modes of a ligand on the CB2 receptor. Our results indicated that the known antagonists seeded in the testing database can be distinguished from a significant amount of randomly chosen molecules. Our studies demonstrated that the established GPCR structure-based virtual screening approach provided a new strategy with a high potential for in silico identifying novel CB2 antagonist leads based on the homology-generated 3D CB2 structure model.

摘要

大麻素(CB)受体在调节疾病方面具有治疗特异性的潜力,这使其成为寻找新药时最重要的G蛋白偶联受体(GPCR)靶点之一。鉴于缺乏相关的三维实验结构,我们基于三维CB2同源结构模型建立了一种基于结构的虚拟筛选方案,以寻找CB2生物活性拮抗剂。然而,现有的同源性预测三维模型往往与天然结构存在偏差,因此可能会在计算机辅助设计中产生错误的偏差。为了克服这个问题,我们开发了一种三维测试数据库查询算法,以检查构建的三维CB2受体结构模型以及预测的结合口袋。在本研究中,首先使用柔性对接模拟生成拮抗剂结合的CB2受体复合物模型,然后通过分子动力学和力学(MD/MM)计算进一步优化。然后,通过探索受体与配体之间的相互作用来检查CB2-配体复合物的优化三维结构模型,以预测其拮抗剂的潜在CB2结合口袋。通过针对包含已知拮抗剂的测试化合物数据库进行FlexX-Pharm对接,对配体-受体复合物模型和预测的拮抗剂结合口袋进行进一步处理和验证。此外,还建立了一种一致性评分(CScore)函数算法,对配体在CB2受体上的结合相互作用模式进行排名。我们的结果表明,测试数据库中植入的已知拮抗剂可以与大量随机选择的分子区分开来。我们的研究表明,基于同源性生成的三维CB2结构模型,所建立的基于GPCR结构的虚拟筛选方法为计算机辅助识别新型CB2拮抗剂先导物提供了一种具有高潜力的新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验