Suppr超能文献

针对G蛋白偶联受体的PREDICT建模与计算机模拟筛选

PREDICT modeling and in-silico screening for G-protein coupled receptors.

作者信息

Shacham Sharon, Marantz Yael, Bar-Haim Shay, Kalid Ori, Warshaviak Dora, Avisar Noa, Inbal Boaz, Heifetz Alexander, Fichman Merav, Topf Maya, Naor Zvi, Noiman Silvia, Becker Oren M

机构信息

Predix Pharmaceuticals Ltd, Ramat Gan, Israel.

出版信息

Proteins. 2004 Oct 1;57(1):51-86. doi: 10.1002/prot.20195.

Abstract

G-protein coupled receptors (GPCRs) are a major group of drug targets for which only one x-ray structure is known (the nondrugable rhodopsin), limiting the application of structure-based drug discovery to GPCRs. In this paper we present the details of PREDICT, a new algorithmic approach for modeling the 3D structure of GPCRs without relying on homology to rhodopsin. PREDICT, which focuses on the transmembrane domain of GPCRs, starts from the primary sequence of the receptor, simultaneously optimizing multiple 'decoy' conformations of the protein in order to find its most stable structure, culminating in a virtual receptor-ligand complex. In this paper we present a comprehensive analysis of three PREDICT models for the dopamine D2, neurokinin NK1, and neuropeptide Y Y1 receptors. A shorter discussion of the CCR3 receptor model is also included. All models were found to be in good agreement with a large body of experimental data. The quality of the PREDICT models, at least for drug discovery purposes, was evaluated by their successful utilization in in-silico screening. Virtual screening using all three PREDICT models yielded enrichment factors 9-fold to 44-fold better than random screening. Namely, the PREDICT models can be used to identify active small-molecule ligands embedded in large compound libraries with an efficiency comparable to that obtained using crystal structures for non-GPCR targets.

摘要

G蛋白偶联受体(GPCRs)是主要的一类药物靶点,目前已知的只有一种X射线结构(不可成药的视紫红质),这限制了基于结构的药物发现方法在GPCRs上的应用。在本文中,我们介绍了PREDICT的详细信息,这是一种新的算法方法,用于在不依赖与视紫红质同源性的情况下对GPCRs的三维结构进行建模。PREDICT聚焦于GPCRs的跨膜结构域,从受体的一级序列开始,同时优化蛋白质的多个“诱饵”构象,以找到其最稳定的结构,最终形成虚拟的受体-配体复合物。在本文中,我们对多巴胺D2受体、神经激肽NK1受体和神经肽Y Y1受体的三个PREDICT模型进行了全面分析。还包括对CCR3受体模型的简短讨论。所有模型都与大量实验数据高度吻合。PREDICT模型的质量,至少出于药物发现的目的,通过它们在虚拟筛选中的成功应用进行了评估。使用所有三个PREDICT模型进行虚拟筛选产生的富集因子比随机筛选好9倍至44倍。也就是说,PREDICT模型可用于识别大型化合物库中嵌入的活性小分子配体,其效率与使用非GPCR靶点的晶体结构所获得的效率相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验