Tamba Maurizio, Dajka Katalin, Ferreri Carla, Asmus Klaus-Dieter, Chatgilialoglu Chryssostomos
I.S.O.F., Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy.
J Am Chem Soc. 2007 Jul 18;129(28):8716-23. doi: 10.1021/ja070626q. Epub 2007 Jun 20.
The one-electron reduction of methanesulfonyl chloride (MeSO2Cl) leads, in the first instance, to an electron adduct MeSO2Cl(.)(-) which lives long enough for direct detection and decays into sulfonyl radicals MeSO2(.) and Cl(-), with k = 1.5 x 10(6) s(-1). Both, MeSO2Cl(.)(-) and MeSO2(.) showed a similar absorption in the UV with lambdamax of 320 nm. In the presence of oxygen, MeSO2Cl(.)(-) transfers an electron to O(2) and establishes an equilibrium with superoxide. The rate constant for the forward reaction was measured to 4.1 x 10(9) M(-1) s(-1), while for the back reaction only an interval of 1.7 x 10(5) to 1.7 x 10(6) M(-1) s(-1) could be estimated, with a somewhat higher degree of confidence for the lower value. This corresponds to an equilibrium constant in the range of 2.4 x 10(3) to 2.4 x 10(4). With reference to E degrees (O2/O2(.)(-)) = -155 mV, the redox potential of the sulfonyl chloride couple, E degrees (MeSO2Cl/MeSO2Cl(.)(-)), thus results between being equal to -355 and -414 mV (vs NHE). MeSO2Cl(.)(-) reduces (besides O2) 4-nitroacetophenone. The underlying electron transfer took place with k = 1.5 x 10(9) M(-1) s(-1), corroborating an E degrees for the sulfonyl chloride couple significantly exceeding the above listed lower value. The MeSO2(.) radical added to oxygen with a rate constant of 1.1 x 10(9) M(-1) s(-1). Re-dissociation of O2 from MeSO2OO(.) occurred only very slowly, if at all, that is, with k << 10(5) s(-1). MeSO2(.) radicals can act as the catalyst for the cis-trans isomerization of several Z- and E-mono-unsaturated fatty acid methyl esters in homogeneous solution. The effectiveness of the isomerization processes has been addressed, and in the presence of oxygen the isomerization is completely suppressed.
甲磺酰氯(MeSO₂Cl)的单电子还原首先会生成电子加合物MeSO₂Cl(.)⁻,其存在时间足够长以便直接检测,随后会分解为磺酰基自由基MeSO₂(.)和Cl⁻,分解速率常数k = 1.5×10⁶ s⁻¹。MeSO₂Cl(.)⁻和MeSO₂(.)在紫外光区均有相似吸收,最大吸收波长λmax为320 nm。在有氧气存在的情况下,MeSO₂Cl(.)⁻会将一个电子转移给O₂,并与超氧化物建立平衡。正向反应的速率常数经测定为4.1×10⁹ M⁻¹ s⁻¹,而逆向反应的速率常数仅能估计在1.7×10⁵至1.7×10⁶ M⁻¹ s⁻¹之间,对较低值的置信度稍高一些。这对应着平衡常数在2.4×10³至2.4×10⁴的范围内。参照E°(O₂/O₂(.)⁻) = -155 mV,磺酰氯电对的氧化还原电位E°(MeSO₂Cl/MeSO₂Cl(.)⁻)因此在等于 -355至 -414 mV(相对于标准氢电极)之间。MeSO₂Cl(.)⁻(除了O₂之外)还能还原4 - 硝基苯乙酮。其潜在的电子转移以k = 1.5×10⁹ M⁻¹ s⁻¹的速率发生,这证实了磺酰氯电对的E°显著超过上述列出的较低值。MeSO₂(.)自由基与氧气加成的速率常数为1.1×10⁹ M⁻¹ s⁻¹。O₂从MeSO₂OO(.)重新解离的过程即使发生也非常缓慢,即k << 10⁵ s⁻¹。MeSO₂(.)自由基可在均相溶液中作为几种Z型和E型单不饱和脂肪酸甲酯顺反异构化的催化剂。已探讨了异构化过程的有效性,并且在有氧气存在的情况下,异构化完全被抑制。