Suppr超能文献

用于人类脑皮层电图神经假体的介观运动控制信号的提取与定位

Extraction and localization of mesoscopic motor control signals for human ECoG neuroprosthetics.

作者信息

Sanchez Justin C, Gunduz Aysegul, Carney Paul R, Principe Jose C

机构信息

Neuroprosthetics Research Group, Department of Pediatrics, Division of Neurology, University of Florida, Gainesville, FL 32610, USA.

出版信息

J Neurosci Methods. 2008 Jan 15;167(1):63-81. doi: 10.1016/j.jneumeth.2007.04.019. Epub 2007 May 5.

Abstract

Electrocorticogram (ECoG) recordings for neuroprosthetics provide a mesoscopic level of abstraction of brain function between microwire single neuron recordings and the electroencephalogram (EEG). Single-trial ECoG neural interfaces require appropriate feature extraction and signal processing methods to identify and model in real-time signatures of motor events in spontaneous brain activity. Here, we develop the clinical experimental paradigm and analysis tools to record broadband (1Hz to 6kHz) ECoG from patients participating in a reaching and pointing task. Motivated by the significant role of amplitude modulated rate coding in extracellular spike based brain-machine interfaces (BMIs), we develop methods to quantify spatio-temporal intermittent increased ECoG voltages to determine if they provide viable control inputs for ECoG neural interfaces. This study seeks to explore preprocessing modalities that emphasize amplitude modulation across frequencies and channels in the ECoG above the level of noisy background fluctuations in order to derive the commands for complex, continuous control tasks. Preliminary experiments show that it is possible to derive online predictive models and spatially localize the generation of commands in the cortex for motor tasks using amplitude modulated ECoG.

摘要

用于神经假体的脑皮层电图(ECoG)记录在微线单神经元记录和脑电图(EEG)之间提供了一个介观层面的脑功能抽象。单试次ECoG神经接口需要合适的特征提取和信号处理方法,以便在自发脑活动中实时识别和建模运动事件的特征。在这里,我们开发了临床实验范式和分析工具,用于记录参与伸手和指向任务的患者的宽带(1Hz至6kHz)ECoG。受调幅速率编码在基于细胞外尖峰的脑机接口(BMI)中的重要作用启发,我们开发了量化时空间歇性增加的ECoG电压的方法,以确定它们是否为ECoG神经接口提供可行的控制输入。本研究旨在探索预处理模式,该模式强调ECoG中跨越频率和通道的幅度调制,高于噪声背景波动水平,以便为复杂的连续控制任务推导命令。初步实验表明,使用调幅ECoG可以推导出在线预测模型,并在皮层中对运动任务的命令生成进行空间定位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验