Suppr超能文献

基于皮层脑电图的脑机接口——西雅图的经验

Electrocorticography-based brain computer interface--the Seattle experience.

作者信息

Leuthardt Eric C, Miller Kai J, Schalk Gerwin, Rao Rajesh P N, Ojemann Jeffrey G

机构信息

Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, WA 98104, USA.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):194-8. doi: 10.1109/TNSRE.2006.875536.

Abstract

Electrocorticography (ECoG) has been demonstrated to be an effective modality as a platform for brain-computer interfaces (BCIs). Through our experience with ten subjects, we further demonstrate evidence to support the power and flexibility of this signal for BCI usage. In a subset of four patients, closed-loop BCI experiments were attempted with the patient receiving online feedback that consisted of one-dimensional cursor movement controlled by ECoG features that had shown correlation with various real and imagined motor and speech tasks. All four achieved control, with final target accuracies between 73%-100%. We assess the methods for achieving control and the manner in which enhancing online control can be accomplished by rescreening during online tasks. Additionally, we assess the relevant issues of the current experimental paradigm in light of their clinical constraints.

摘要

皮质脑电图(ECoG)已被证明是一种有效的模式,可作为脑机接口(BCI)的平台。通过我们对十名受试者的经验,我们进一步证明了支持该信号用于BCI的强大功能和灵活性的证据。在四名患者的子集中,尝试进行了闭环BCI实验,患者接收由ECoG特征控制的一维光标移动的在线反馈,这些特征已显示出与各种实际和想象的运动及言语任务相关。所有四名患者均实现了控制,最终目标准确率在73%-100%之间。我们评估了实现控制的方法以及通过在线任务期间重新筛选来增强在线控制的方式。此外,我们根据当前实验范式的临床限制评估了相关问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验