Suppr超能文献

脑机接口中神经信号方向信息综述。

A review on directional information in neural signals for brain-machine interfaces.

作者信息

Waldert Stephan, Pistohl Tobias, Braun Christoph, Ball Tonio, Aertsen Ad, Mehring Carsten

机构信息

Faculty of Biology, Albert-Ludwigs-University, Hauptstrasse 1, Freiburg, Germany.

出版信息

J Physiol Paris. 2009 Sep-Dec;103(3-5):244-54. doi: 10.1016/j.jphysparis.2009.08.007. Epub 2009 Aug 7.

Abstract

Brain-machine interfaces (BMIs) can be characterized by the technique used to measure brain activity and by the way different brain signals are translated into commands that control an effector. We give an overview of different approaches and focus on a particular BMI approach: the movement of an artificial effector (e.g. arm prosthesis to the right) by those motor cortical signals that control the equivalent movement of a corresponding body part (e.g. arm movement to the right). This approach has been successfully applied in monkeys and humans by accurately extracting parameters of movements from the spiking activity of multiple single-units. Here, we review recent findings showing that analog neuronal population signals, ranging from intracortical local field potentials over epicortical ECoG to non-invasive EEG and MEG, can also be used to decode movement direction and continuous movement trajectories. Therefore, these signals might provide additional or alternative control for this BMI approach, with possible advantages due to reduced invasiveness.

摘要

脑机接口(BMI)可以通过用于测量大脑活动的技术以及不同脑信号转化为控制效应器的命令的方式来进行表征。我们概述了不同的方法,并重点关注一种特定的BMI方法:通过控制相应身体部位等效运动(例如右臂向右移动)的运动皮层信号来控制人造效应器的运动(例如右臂假肢向右移动)。通过从多个单个神经元的放电活动中准确提取运动参数,这种方法已在猴子和人类身上成功应用。在此,我们回顾了最近的研究结果,这些结果表明,从皮层内局部场电位、皮层表面脑电图(ECoG)到非侵入性脑电图(EEG)和脑磁图(MEG)等模拟神经元群体信号,也可用于解码运动方向和连续运动轨迹。因此,这些信号可能为这种BMI方法提供额外的或替代的控制方式,因其侵入性降低而可能具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验