Lerou J G C, Mourisse J
Radboud University Nijmegen Medical Centre, Department of Anaesthesia, Geert Grooteplein 10, 6500 HB Nijmegen, The Netherlands.
Br J Anaesth. 2007 Aug;99(2):226-36. doi: 10.1093/bja/aem148. Epub 2007 Jun 22.
The delay between changes in end-expired sevoflurane concentrations and bispectral index (BIS) may be characterized by a 'rate constant' (ke0). A smaller ke0 reflects a longer delay. Values for ke0 vary substantially among studies. The question arises how ke0 depends on experimental conditions, including ventilation and apparatus.
Increasing and decreasing sevoflurane concentrations were cyclically delivered to our validated model. First, we quantified theoretical ke0 values for distinct alveolar ventilations, estimating ke0 from sevoflurane tensions in alveolar space and grey matter. Secondly, we investigated the impact of experimental conditions. To predict BIS, the model was extended with a pharmacodynamic section, including ke0. Known values, matching theoretical values, were assigned to this ke0. These were recovered from end-expired concentrations and BIS. Possible determinants of error (difference between assigned and recovered ke0) were varied, that is fraction of dead space gas in end-expired gas (d), and time delays in measuring BIS (tBIS) and end-expired concentrations (tEE).
Theoretical ke0s were 0.7, 0.53, 0.35, and 0.2 min(-1) for an arterial Pco2 of 8, 6.67, 5.33 (normocapnia), and 4 kPa, respectively. For spontaneous ventilation, ke0 = 0.53 min(-1). Recovered ke0s depended on d and Deltat (= tBIS - tEE) and were smaller than assigned values (if Deltat > 0). Errors increased with increasing d and Deltat. For normocapnia, ke0 was between 0.32 and 0.23 min(-1) (d = 0.1; any Deltat = 0-60 s). For spontaneous ventilation, ke0 was between 0.51 and 0.40 min(-1) (d = 0-0.1; Deltat = 5-20 s).
Published ke0s (0.22-0.53 min(-1)), including our own for sevoflurane-depressed spontaneous ventilation (0.48 min(-1)), are in the ranges dictated by investigation-specific conditions.
呼气末七氟醚浓度变化与脑电双频指数(BIS)之间的延迟可能可用“速率常数”(ke0)来表征。ke0越小,延迟越长。不同研究中ke0的值差异很大。由此产生的问题是ke0如何依赖于实验条件,包括通气和设备。
将七氟醚浓度的增减循环输送至我们经验证的模型。首先,我们对不同肺泡通气量的理论ke0值进行量化,根据肺泡空间和灰质中的七氟醚张力估算ke0。其次,我们研究了实验条件的影响。为预测BIS,该模型扩展了一个包括ke0的药效学部分。将与理论值匹配的已知值赋予这个ke0。这些值从呼气末浓度和BIS中恢复。误差的可能决定因素(赋予的ke0与恢复的ke0之间的差异)有所变化,即呼气末气体中死腔气体的比例(d)以及测量BIS(tBIS)和呼气末浓度(tEE)的时间延迟。
动脉血二氧化碳分压为8、6.67、5.33(正常碳酸血症)和4 kPa时,理论ke0分别为0.7、0.53、0.35和0.2 min⁻¹。对于自主通气,ke0 = 0.53 min⁻¹。恢复的ke0取决于d和Δt(= tBIS - tEE),且小于赋予的值(如果Δt > 0)。误差随着d和Δt的增加而增大。对于正常碳酸血症,ke0在0.32至0.23 min⁻¹之间(d = 0.1;任何Δt = 0 - 60秒)。对于自主通气,ke0在0.51至0.40 min⁻¹之间(d = 0 - 0.1;Δt = 5 - 20秒)。
已发表的ke0值(0.22 - 0.53 min⁻¹),包括我们自己对于七氟醚抑制自主通气时的ke0值(0.48 min⁻¹),都在特定研究条件所决定的范围内。