Swift Lonnie P, Cutts Suzanne M, Nudelman Abraham, Levovich Inessa, Rephaeli Ada, Phillips Don R
Department of Biochemistry, La Trobe University, Bundoora, VIC 3086, Australia.
Cancer Chemother Pharmacol. 2008 Apr;61(5):739-49. doi: 10.1007/s00280-007-0528-2. Epub 2007 Jun 27.
The importance of understanding the mechanism of action of anticancer agents is sometimes overlooked in the pursuit of new and therapeutically advantageous compounds. Doxorubicin has long been identified as an inhibitor of the DNA-decatenating enzyme topoisomerase II, this being believed to be the major mechanism of action of this drug. However, the complex nature of cytotoxicity induced by doxorubicin suggests that more than one mechanism of action is responsible for cell kill. Investigation into various other cellular effects has shown that doxorubicin can, in the presence of formaldehyde, form doxorubicin-DNA adducts, resulting in enhanced cell death.
We have used six catalytic inhibitors of topoisomerase II (aclarubicin, merbarone, suramin, staurosporine, maleimide and sobuzoxane) to investigate the role of topoisomerase II mediated cell effects in doxorubicin-DNA adduct inducing treatments. Adduct levels were determined by scintillation counting of [14C]doxorubicin-DNA lesions and DNA damage responses by Comet analysis and flow cytometry (apoptosis).
Here we show that sobuzoxane inhibits topoisomerase II but in the presence of doxorubicin also enhances the production of doxorubicin-DNA adducts resulting in an enhanced cytotoxic response. We show that the formation of doxorubicin-DNA adducts is mediated by formaldehyde released from sobuzoxane when it is metabolised.
Sobuzoxane has also been shown to decrease the normally dose limiting cardiotoxicity commonly exhibited with clinical use of doxorubicin. The potential combination of doxorubicin and sobuzoxane in cancer chemotherapy has two advantages. First, the mechanism of doxorubicin toxicity is shifted away from topoisomerase II inhibition and towards drug-DNA adduct formation which may allow for a lower drug dose to be used and circumvent some drug resistance problems. Second, the addition of a cardioprotecting agent will counteract the commonly dose limiting side effect of cardiac damage resulting from doxorubicin treatment. The importance of the potentiation of cell kill of doxorubicin and sobuzoxane provides a rationalisation of a mechanistic-based combination of anticancer drugs for an improved clinical outcome.
在追求新型且具有治疗优势的化合物过程中,理解抗癌药物作用机制的重要性有时会被忽视。长期以来,阿霉素一直被认为是DNA解连环酶拓扑异构酶II的抑制剂,这被视作该药物的主要作用机制。然而,阿霉素诱导的细胞毒性具有复杂性,这表明细胞杀伤是由多种作用机制共同导致的。对各种其他细胞效应的研究表明,在甲醛存在的情况下,阿霉素能够形成阿霉素-DNA加合物,从而导致细胞死亡增加。
我们使用了六种拓扑异构酶II催化抑制剂(阿柔比星、美巴龙、苏拉明、星形孢菌素、马来酰亚胺和索布佐生)来研究拓扑异构酶II介导的细胞效应在阿霉素-DNA加合物诱导处理中的作用。通过对[14C]阿霉素-DNA损伤进行闪烁计数来测定加合物水平,并通过彗星分析和流式细胞术(凋亡)检测DNA损伤反应。
我们在此表明,索布佐生可抑制拓扑异构酶II,但在阿霉素存在时,它还会增强阿霉素-DNA加合物的生成,从而导致细胞毒性反应增强。我们证明,索布佐生代谢时释放的甲醛介导了阿霉素-DNA加合物的形成。
索布佐生还被证明可降低阿霉素临床使用中常见的通常会限制剂量的心脏毒性。阿霉素和索布佐生在癌症化疗中的潜在联合使用具有两个优势。首先,阿霉素毒性机制从抑制拓扑异构酶II转变为药物-DNA加合物形成,这可能允许使用更低的药物剂量并规避一些耐药性问题。其次,添加心脏保护剂将抵消阿霉素治疗导致的通常会限制剂量的心脏损伤副作用。阿霉素和索布佐生增强细胞杀伤作用的重要性为基于机制的抗癌药物联合使用以改善临床结果提供了理论依据。