Klon Anthony E, Diller David J
Department of Molecular Modeling, Pharmacopeia, P.O. Box 5350, Princeton, New Jersey 08543-5350, USA.
J Chem Inf Model. 2007 Jul-Aug;47(4):1354-65. doi: 10.1021/ci7000204. Epub 2007 Jun 27.
We propose a novel method to prioritize libraries for combinatorial synthesis and high-throughput screening that assesses the viability of a particular library on the basis of the aggregate physical-chemical properties of the compounds using a naïve Bayesian classifier. This approach prioritizes collections of related compounds according to the aggregate values of their physical-chemical parameters in contrast to single-compound screening. The method is also shown to be useful in screening existing noncombinatorial libraries when the compounds in these libraries have been previously clustered according to their molecular graphs. We show that the method used here is comparable or superior to the single-compound virtual screening of combinatorial libraries and noncombinatorial libraries and is superior to the pairwise Tanimoto similarity searching of a collection of combinatorial libraries.
我们提出了一种新方法,用于对组合合成和高通量筛选的文库进行优先级排序。该方法使用朴素贝叶斯分类器,根据化合物的总体物理化学性质评估特定文库的可行性。与单化合物筛选不同,此方法根据相关化合物集合的物理化学参数的总体值对其进行优先级排序。当这些文库中的化合物先前已根据其分子图进行聚类时,该方法在筛选现有的非组合文库中也很有用。我们表明,这里使用的方法与组合文库和非组合文库的单化合物虚拟筛选相当或更优,并且优于组合文库集合的成对Tanimoto相似性搜索。