Suppr超能文献

天然产物相似性评分及其在化合物库优先级排序中的应用。

Natural product-likeness score and its application for prioritization of compound libraries.

作者信息

Ertl Peter, Roggo Silvio, Schuffenhauer Ansgar

机构信息

Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland.

出版信息

J Chem Inf Model. 2008 Jan;48(1):68-74. doi: 10.1021/ci700286x. Epub 2007 Nov 23.

Abstract

Natural products (NPs) have been optimized in a very long natural selection process for optimal interactions with biological macromolecules. NPs are therefore an excellent source of validated substructures for the design of novel bioactive molecules. Various cheminformatics techniques can provide useful help in analyzing NPs, and the results of such studies may be used with advantage in the drug discovery process. In the present study we describe a method to calculate the natural product-likeness score--a Bayesian measure which allows for the determination of how molecules are similar to the structural space covered by natural products. This score is shown to efficiently separate NPs from synthetic molecules in a cross-validation experiment. Possible applications of the NP-likeness score are discussed and illustrated on several examples including virtual screening, prioritization of compound libraries toward NP-likeness, and design of building blocks for the synthesis of NP-like libraries.

摘要

天然产物(NPs)在漫长的自然选择过程中得到了优化,以实现与生物大分子的最佳相互作用。因此,天然产物是设计新型生物活性分子的经过验证的子结构的极佳来源。各种化学信息学技术可为分析天然产物提供有用的帮助,此类研究结果可在药物发现过程中加以利用。在本研究中,我们描述了一种计算天然产物相似度得分的方法——一种贝叶斯度量,可用于确定分子与天然产物所覆盖的结构空间的相似程度。在交叉验证实验中,该得分被证明能有效地将天然产物与合成分子区分开来。文中讨论了天然产物相似度得分的可能应用,并通过几个例子进行了说明,包括虚拟筛选、针对天然产物相似度对化合物库进行优先级排序以及设计用于合成类天然产物库的构建模块。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验