Suppr超能文献

具有[4Fe-4S]簇的DNA修复糖基化酶:DNA介导的电荷传输的氧化还原辅助因子?

DNA repair glycosylases with a [4Fe-4S] cluster: a redox cofactor for DNA-mediated charge transport?

作者信息

Boal Amie K, Yavin Eylon, Barton Jacqueline K

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

J Inorg Biochem. 2007 Nov;101(11-12):1913-21. doi: 10.1016/j.jinorgbio.2007.05.001. Epub 2007 May 17.

Abstract

The [4Fe-4S] cluster is ubiquitous to a class of base excision repair enzymes in organisms ranging from bacteria to man and was first considered as a structural element, owing to its redox stability under physiological conditions. When studied bound to DNA, two of these repair proteins (MutY and Endonuclease III from Escherichia coli) display DNA-dependent reversible electron transfer with characteristics typical of high potential iron proteins. These results have inspired a reexamination of the role of the [4Fe-4S] cluster in this class of enzymes. Might the [4Fe-4S] cluster be used as a redox cofactor to search for damaged sites using DNA-mediated charge transport, a process well known to be highly sensitive to lesions and mismatched bases? Described here are experiments demonstrating the utility of DNA-mediated charge transport in characterizing these DNA-binding metalloproteins, as well as efforts to elucidate this new function for DNA as an electronic signaling medium among the proteins.

摘要

[4Fe-4S]簇在从细菌到人类的生物体中一类碱基切除修复酶中普遍存在,由于其在生理条件下的氧化还原稳定性,最初被认为是一种结构元件。当研究其与DNA结合时,其中两种修复蛋白(来自大肠杆菌的MutY和核酸内切酶III)表现出依赖于DNA的可逆电子转移,具有高电位铁蛋白的典型特征。这些结果促使人们重新审视[4Fe-4S]簇在这类酶中的作用。[4Fe-4S]簇是否可以用作氧化还原辅因子,通过DNA介导的电荷传输来寻找受损位点,而这一过程众所周知对损伤和错配碱基高度敏感?本文描述了一些实验,这些实验证明了DNA介导的电荷传输在表征这些DNA结合金属蛋白方面的效用,以及阐明DNA作为蛋白质间电子信号介质这一新功能的努力。

相似文献

1
DNA repair glycosylases with a [4Fe-4S] cluster: a redox cofactor for DNA-mediated charge transport?
J Inorg Biochem. 2007 Nov;101(11-12):1913-21. doi: 10.1016/j.jinorgbio.2007.05.001. Epub 2007 May 17.
2
DNA-bound redox activity of DNA repair glycosylases containing [4Fe-4S] clusters.
Biochemistry. 2005 Jun 14;44(23):8397-407. doi: 10.1021/bi047494n.
4
Fe-S Clusters and MutY Base Excision Repair Glycosylases: Purification, Kinetics, and DNA Affinity Measurements.
Methods Enzymol. 2018;599:21-68. doi: 10.1016/bs.mie.2017.11.035. Epub 2018 Jan 10.
5
Dispensability of the [4Fe-4S] cluster in novel homologues of adenine glycosylase MutY.
FEBS J. 2016 Feb;283(3):521-40. doi: 10.1111/febs.13608. Epub 2016 Jan 4.
6
A role for iron-sulfur clusters in DNA repair.
Curr Opin Chem Biol. 2005 Apr;9(2):145-51. doi: 10.1016/j.cbpa.2005.02.006.
7
Theoretical study of DNA damage recognition via electron transfer from the [4Fe-4S] complex of MutY.
Biophys J. 2008 Oct;95(7):3259-68. doi: 10.1529/biophysj.108.132183. Epub 2008 Jul 3.
10

引用本文的文献

3
The Janus-Faced Role of Lipid Droplets in Aging: Insights from the Cellular Perspective.
Biomolecules. 2023 May 30;13(6):912. doi: 10.3390/biom13060912.
5
dG in the Shadow of dG-A Theoretical Study of Clustered DNA Lesions.
Int J Mol Sci. 2023 Mar 10;24(6):5361. doi: 10.3390/ijms24065361.
6
Noncatalytic Domains in DNA Glycosylases.
Int J Mol Sci. 2022 Jun 30;23(13):7286. doi: 10.3390/ijms23137286.
7
The methylation-independent mismatch repair machinery in .
Microbiology (Reading). 2021 Dec;167(12). doi: 10.1099/mic.0.001120.
8
Effective Distance for DNA-Mediated Charge Transport between Repair Proteins.
ACS Cent Sci. 2019 Jan 23;5(1):65-72. doi: 10.1021/acscentsci.8b00566. Epub 2019 Jan 11.
9
Fe-S Clusters and MutY Base Excision Repair Glycosylases: Purification, Kinetics, and DNA Affinity Measurements.
Methods Enzymol. 2018;599:21-68. doi: 10.1016/bs.mie.2017.11.035. Epub 2018 Jan 10.
10
Acute loss of iron-sulfur clusters results in metabolic reprogramming and generation of lipid droplets in mammalian cells.
J Biol Chem. 2018 May 25;293(21):8297-8311. doi: 10.1074/jbc.RA118.001885. Epub 2018 Mar 9.

本文引用的文献

1
Direct electrochemistry of endonuclease III in the presence and absence of DNA.
J Am Chem Soc. 2006 Sep 20;128(37):12082-3. doi: 10.1021/ja064784d.
2
Electrochemistry using self-assembled DNA monolayers on highly oriented pyrolytic graphite.
Langmuir. 2006 Aug 29;22(18):7917-22. doi: 10.1021/la0611054.
3
A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA.
Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5752-7. doi: 10.1073/pnas.0509723103. Epub 2006 Apr 3.
4
Electron trap for DNA-bound repair enzymes: a strategy for DNA-mediated signaling.
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3610-4. doi: 10.1073/pnas.0600239103. Epub 2006 Feb 27.
6
MutYH (MYH) and colorectal cancer.
Biochem Soc Trans. 2005 Aug;33(Pt 4):679-83. doi: 10.1042/BST0330679.
7
DNA-bound redox activity of DNA repair glycosylases containing [4Fe-4S] clusters.
Biochemistry. 2005 Jun 14;44(23):8397-407. doi: 10.1021/bi047494n.
8
Electrochemical detection of lesions in DNA.
Bioconjug Chem. 2005 Mar-Apr;16(2):312-21. doi: 10.1021/bc0497362.
9
Protein-DNA charge transport: redox activation of a DNA repair protein by guanine radical.
Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3546-51. doi: 10.1073/pnas.0409410102. Epub 2005 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验