Uffmann Kai, Gruetter Rolf
Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
J Neurosci Res. 2007 Nov 15;85(15):3304-17. doi: 10.1002/jnr.21392.
A novel approach for the mathematical modeling of (13)C label incorporation into amino acids via the TCA cycle that eliminates the explicit calculation of the labeling of the TCA cycle intermediates is described, resulting in one differential equation per measurable time course of labeled amino acid. The equations demonstrate that both glutamate C4 and C3 labeling depend in a predictable manner on both transmitochondrial exchange rate, V(X), and TCA cycle rate, V(TCA). For example, glutamate C4 labeling alone does not provide any information on either V(X) or V(TCA) but rather a composite "flux". Interestingly, glutamate C3 simultaneously receives label not only from pyruvate C3 but also from glutamate C4, described by composite precursor functions that depend in a probabilistic way on the ratio of V(X) to V(TCA): An initial rate of labeling of glutamate C3 (or C2) being close to zero is indicative of a high V(X)/V(TCA). The derived analytical solution of these equations shows that, when the labeling of the precursor pool pyruvate reaches steady state quickly compared with the turnover rate of the measured amino acids, instantaneous labeling can be assumed for pyruvate. The derived analytical solution has acceptable errors compared with experimental uncertainty, thus obviating precise knowledge on the labeling kinetics of the precursor. In conclusion, a substantial reformulation of the modeling of label flow via the TCA cycle turnover into the amino acids is presented in the current study. This approach allows one to determine metabolic rates by fitting explicit mathematical functions to measured time courses.
描述了一种通过三羧酸循环(TCA循环)将¹³C标记掺入氨基酸的数学建模新方法,该方法无需明确计算TCA循环中间体的标记情况,从而每个可测量的标记氨基酸时间进程产生一个微分方程。这些方程表明,谷氨酸C4和C3的标记均以可预测的方式取决于线粒体间交换速率V(X)和TCA循环速率V(TCA)。例如,仅谷氨酸C4标记无法提供关于V(X)或V(TCA)的任何信息,而是提供一个复合“通量”。有趣的是,谷氨酸C3同时不仅从丙酮酸C3接收标记,还从谷氨酸C4接收标记,这由复合前体函数描述,该函数以概率方式取决于V(X)与V(TCA)的比率:谷氨酸C3(或C2)的初始标记速率接近零表明V(X)/V(TCA)较高。这些方程的推导解析解表明,当前体池丙酮酸的标记与所测氨基酸的周转速率相比快速达到稳态时,可假定丙酮酸的瞬时标记。与实验不确定性相比,推导的解析解具有可接受的误差,从而无需精确了解前体的标记动力学。总之,本研究提出了对通过TCA循环周转进入氨基酸的标记流建模的重大重新表述。这种方法允许通过将明确的数学函数拟合到测量的时间进程来确定代谢速率。