Gauthier Gilles, Besbeas Panagiotis, Lebreton Jean-Dominique, Morgan Byron J T
Département de biologie and Centre d'etudes nordiques, Université Laval, Québec, PQ, G1K 7P4, Canada.
Ecology. 2007 Jun;88(6):1420-9. doi: 10.1890/06-0953.
There are few analytic tools available to formally integrate information coming from population surveys and demographic studies. The Kalman filter is a procedure that facilitates such integration. Based on a state-space model, we can obtain a likelihood function for the survey data using a Kalman filter, which we may then combine with a likelihood for the demographic data. In this paper, we used this combined approach to analyze the population dynamics of a hunted species, the Greater Snow Goose (Chen caerulescens atlantica), and to examine the extent to which it can improve previous demographic population models. The state equation of the state-space model was a matrix population model with fecundity and regression parameters relating adult survival and harvest rate estimated in a previous capture-recapture study. The observation equation combined the output from this model with estimates from an annual spring photographic survey of the population. The maximum likelihood estimates of the regression parameters from the combined analysis differed little from the values of the original capture-recapture analysis, though their precision improved. The model output was found to be insensitive to a wide range of coefficient of variation (CV) in fecundity parameters. We found a close match between the surveyed and smoothed population size estimates generated by the Kalman filter over an 18-year period, and the estimated CV of the survey (0.078-0.150) was quite compatible with its assumed value (approximately 0.10). When we used the updated parameter values to predict future population size, the model underestimated the surveyed population size by 18% over a three-year period. However, this could be explained by a concurrent change in the survey method. We conclude that the Kalman filter is a promising approach to forecast population change because it incorporates survey information in a formal way compared with ad hoc approaches that either neglect this information or require some parameter or model tuning.
几乎没有可用于正式整合来自人口调查和人口统计学研究信息的分析工具。卡尔曼滤波器是一种有助于进行这种整合的程序。基于状态空间模型,我们可以使用卡尔曼滤波器获得调查数据的似然函数,然后将其与人口统计数据的似然函数相结合。在本文中,我们使用这种组合方法来分析一种被捕猎物种——大雪雁(Chen caerulescens atlantica)的种群动态,并研究它在多大程度上能够改进先前的人口统计学种群模型。状态空间模型的状态方程是一个矩阵种群模型,其繁殖力以及在先前的标记重捕研究中估计的与成年个体存活率和捕获率相关的回归参数。观测方程将该模型的输出与对该种群进行的年度春季摄影调查的估计值相结合。尽管组合分析中回归参数的最大似然估计值的精度有所提高,但其与原始标记重捕分析的值差异不大。结果发现该模型输出对繁殖力参数的广泛变异系数(CV)不敏感。我们发现在18年期间卡尔曼滤波器生成的调查和平滑后的种群数量估计值之间非常匹配,并且调查的估计CV(0.078 - 0.150)与其假定值(约0.10)相当吻合。当我们使用更新后的参数值来预测未来种群数量时,该模型在三年期间将调查的种群数量低估了18%。然而,这可以通过调查方法的同时变化来解释。我们得出结论,卡尔曼滤波器是一种很有前景的预测种群变化的方法,因为与要么忽略此信息要么需要一些参数或模型调整的临时方法相比,它以一种正式的方式纳入了调查信息。