Suppr超能文献

用于捕获-再捕获研究的空间明确最大似然法。

Spatially explicit maximum likelihood methods for capture-recapture studies.

作者信息

Borchers D L, Efford M G

机构信息

Research Unit for Wildlife Population Assessment, The Observatory, Buchanan Gardens, University of St Andrews, Fife, KY16 9LZ, Scotland.

出版信息

Biometrics. 2008 Jun;64(2):377-85. doi: 10.1111/j.1541-0420.2007.00927.x. Epub 2007 Oct 26.

Abstract

Live-trapping capture-recapture studies of animal populations with fixed trap locations inevitably have a spatial component: animals close to traps are more likely to be caught than those far away. This is not addressed in conventional closed-population estimates of abundance and without the spatial component, rigorous estimates of density cannot be obtained. We propose new, flexible capture-recapture models that use the capture locations to estimate animal locations and spatially referenced capture probability. The models are likelihood-based and hence allow use of Akaike's information criterion or other likelihood-based methods of model selection. Density is an explicit parameter, and the evaluation of its dependence on spatial or temporal covariates is therefore straightforward. Additional (nonspatial) variation in capture probability may be modeled as in conventional capture-recapture. The method is tested by simulation, using a model in which capture probability depends only on location relative to traps. Point estimators are found to be unbiased and standard error estimators almost unbiased. The method is used to estimate the density of Red-eyed Vireos (Vireo olivaceus) from mist-netting data from the Patuxent Research Refuge, Maryland, U.S.A. Estimates agree well with those from an existing spatially explicit method based on inverse prediction. A variety of additional spatially explicit models are fitted; these include models with temporal stratification, behavioral response, and heterogeneous animal home ranges.

摘要

在固定诱捕地点对动物种群进行活体诱捕重捕研究不可避免地具有空间成分

靠近诱捕器的动物比远离诱捕器的动物更有可能被捕获。传统的封闭种群丰度估计中并未涉及这一点,并且没有空间成分就无法获得严格的密度估计。我们提出了新的、灵活的重捕模型,该模型利用捕获位置来估计动物位置和空间参考捕获概率。这些模型基于似然性,因此允许使用赤池信息准则或其他基于似然性的模型选择方法。密度是一个明确的参数,因此评估其对空间或时间协变量的依赖性很直接。捕获概率的额外(非空间)变化可以像在传统重捕中那样建模。通过模拟对该方法进行了测试,使用了一个捕获概率仅取决于相对于诱捕器位置的模型。发现点估计是无偏的,标准误差估计几乎也是无偏的。该方法用于根据美国马里兰州帕塔克森特研究保护区的雾网数据估计红眼绿鹃(绿鹃属橄榄绿鹃)的密度。估计结果与基于反向预测的现有空间明确方法的结果非常吻合。拟合了各种额外的空间明确模型;这些模型包括具有时间分层、行为反应和异质动物活动范围的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验