Oka Sadanori, Victor Jonathan D, Conte Mary M, Yanagida Toshio
Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
Vision Res. 2007 Jul;47(16):2212-22. doi: 10.1016/j.visres.2007.03.020. Epub 2007 Jun 29.
Psychophysical and fMRI studies have indicated that visual processing of global symmetry has distinctive scaling properties, and proceeds more slowly than analysis of contrast, spatial frequency, and texture. We therefore undertook a visual evoked potential (VEP) study to directly compare the dynamics of symmetry and texture processing, and to determine the extent to which they interact. Stimuli consisted of interchange between structured and random black-and-white checkerboard stimuli. For symmetry, structured stimuli were colored with 2-fold symmetry (horizontal or vertical mirror), 4-fold symmetry (both mirror axes), and 8-fold symmetry (oblique mirror axes added). For texture, structured stimuli were colored according to the "even" isodipole texture [Julesz, B., Gilbert, E. N., & Victor, J. D. (1978). Visual discrimination of textures with identical third-order statistics. Biological Cybernetics, 31, 137-140]. Thus, all stimuli had the same contrast, and check size, but differed substantially in correlation structure. To separate components of the VEP related to symmetry and texture from components that could be generated by local luminance and contrast changes, we extracted the odd-harmonic components of the VEP (recorded at C(z)-O(z), C(z)-O(1), C(z)-O(2), C(z)-P(z)) elicited by structured-random interchange. Responses to symmetry were largest for the 8-fold patterns, and progressively smaller for 4-fold, vertical, and horizontal symmetry patterns. Eightfold patterns were therefore used in the remainder of the study. The symmetry response is shifted to larger checks and lower temporal frequencies compared to the response to texture, and its temporal tuning is broader. Processing of symmetry makes use of neural mechanisms with larger receptive fields, and slower, more sustained temporal tuning characteristics than those involved in the analysis of texture. Sparse stimuli were used to dissociate check size and check density. VEP responses to sparse symmetry stimuli showed that there is no difference between first- and second-order symmetry for densities less than 12.5%. We discuss these findings in relation to local and global visual processes.
心理物理学和功能磁共振成像研究表明,对全局对称性的视觉处理具有独特的尺度特性,且比对比度、空间频率和纹理分析的速度更慢。因此,我们进行了一项视觉诱发电位(VEP)研究,以直接比较对称性和纹理处理的动态过程,并确定它们相互作用的程度。刺激由结构化和随机黑白棋盘格刺激之间的互换组成。对于对称性,结构化刺激被赋予2倍对称性(水平或垂直镜像)、4倍对称性(两个镜像轴)和8倍对称性(添加斜镜像轴)。对于纹理,结构化刺激根据“偶数”等偶极子纹理[朱尔兹,B.,吉尔伯特,E. N.,& 维克多,J. D.(1978年)。具有相同三阶统计量的纹理的视觉辨别。生物控制论,31,137 - 140]进行着色。因此,所有刺激具有相同的对比度和方格大小,但在相关结构上有很大差异。为了将与对称性和纹理相关的VEP成分与可能由局部亮度和对比度变化产生的成分区分开来,我们提取了由结构化 - 随机互换引发的VEP的奇次谐波成分(在C(z) - O(z)、C(z) - O(1)、C(z) - O(2)、C(z) - P(z)处记录)。对对称性的反应在8倍图案中最大,在4倍、垂直和水平对称图案中逐渐减小。因此,在研究的其余部分使用了8倍图案。与对纹理的反应相比,对称性反应向更大的方格和更低的时间频率偏移,并且其时间调谐更宽。对称性处理利用的神经机制具有比纹理分析中涉及的更大的感受野以及更慢、更持续的时间调谐特性。使用稀疏刺激来分离方格大小和方格密度。对稀疏对称刺激的VEP反应表明,对于密度小于12.5%的情况,一阶和二阶对称性之间没有差异。我们将这些发现与局部和全局视觉过程相关联进行讨论。