Suppr超能文献

初级保健医生和解释性诊断软件通过心电图诊断心房颤动的准确性:来自老年人心房颤动筛查(SAFE)试验的数据分析。

Accuracy of diagnosing atrial fibrillation on electrocardiogram by primary care practitioners and interpretative diagnostic software: analysis of data from screening for atrial fibrillation in the elderly (SAFE) trial.

作者信息

Mant Jonathan, Fitzmaurice David A, Hobbs F D Richard, Jowett Sue, Murray Ellen T, Holder Roger, Davies Michael, Lip Gregory Y H

机构信息

Department of Primary Care and General Practice, University of Birmingham, Birmingham B15 2TT.

出版信息

BMJ. 2007 Aug 25;335(7616):380. doi: 10.1136/bmj.39227.551713.AE. Epub 2007 Jun 29.

Abstract

OBJECTIVE

To assess the accuracy of general practitioners, practice nurses, and interpretative software in the use of different types of electrocardiogram to diagnose atrial fibrillation.

DESIGN

Prospective comparison with reference standard of assessment of electrocardiograms by two independent specialists.

SETTING

49 general practices in central England.

PARTICIPANTS

2595 patients aged 65 or over screened for atrial fibrillation as part of the screening for atrial fibrillation in the elderly (SAFE) study; 49 general practitioners and 49 practice nurses.

INTERVENTIONS

All electrocardiograms were read with the Biolog interpretative software, and a random sample of 12 lead, limb lead, and single lead thoracic placement electrocardiograms were assessed by general practitioners and practice nurses independently of each other and of the Biolog assessment.

MAIN OUTCOME MEASURES

Sensitivity, specificity, and positive and negative predictive values.

RESULTS

General practitioners detected 79 out of 99 cases of atrial fibrillation on a 12 lead electrocardiogram (sensitivity 80%, 95% confidence interval 71% to 87%) and misinterpreted 114 out of 1355 cases of sinus rhythm as atrial fibrillation (specificity 92%, 90% to 93%). Practice nurses detected a similar proportion of cases of atrial fibrillation (sensitivity 77%, 67% to 85%), but had a lower specificity (85%, 83% to 87%). The interpretative software was significantly more accurate, with a specificity of 99%, but missed 36 of 215 cases of atrial fibrillation (sensitivity 83%). Combining general practitioners' interpretation with the interpretative software led to a sensitivity of 92% and a specificity of 91%. Use of limb lead or single lead thoracic placement electrocardiograms resulted in some loss of specificity.

CONCLUSIONS

Many primary care professionals cannot accurately detect atrial fibrillation on an electrocardiogram, and interpretative software is not sufficiently accurate to circumvent this problem, even when combined with interpretation by a general practitioner. Diagnosis of atrial fibrillation in the community needs to factor in the reading of electrocardiograms by appropriately trained people.

摘要

目的

评估全科医生、执业护士以及解读软件在使用不同类型心电图诊断心房颤动时的准确性。

设计

与两位独立专家对心电图评估的参考标准进行前瞻性比较。

地点

英格兰中部的49家全科诊所。

参与者

作为老年人心房颤动筛查(SAFE)研究的一部分,对2595名65岁及以上的患者进行心房颤动筛查;49名全科医生和49名执业护士。

干预措施

所有心电图均使用Biolog解读软件进行解读,随机抽取的12导联、肢体导联和单导联胸壁放置心电图由全科医生和执业护士相互独立且独立于Biolog评估进行评估。

主要观察指标

敏感性、特异性以及阳性和阴性预测值。

结果

全科医生在12导联心电图上检测出99例心房颤动病例中的79例(敏感性80%,95%置信区间71%至87%),并将1355例窦性心律病例中的114例误判为心房颤动(特异性92%,90%至93%)。执业护士检测出的心房颤动病例比例相似(敏感性77%,67%至85%),但特异性较低(85%,83%至87%)。解读软件的准确性明显更高,特异性为99%,但在215例心房颤动病例中漏诊了36例(敏感性83%)。将全科医生的解读与解读软件相结合,敏感性为92%,特异性为91%。使用肢体导联或单导联胸壁放置心电图会导致特异性有所降低。

结论

许多初级保健专业人员无法在心电图上准确检测出心房颤动,解读软件也不够准确,无法规避这一问题,即使与全科医生的解读相结合也不行。社区中心房颤动的诊断需要考虑由经过适当培训的人员来解读心电图。

相似文献

7
Accuracy of electrocardiogram interpretation by cardiologists in the setting of incorrect computer analysis.
J Electrocardiol. 2006 Jul;39(3):343-5. doi: 10.1016/j.jelectrocard.2006.02.002.
8
How can we best detect atrial fibrillation?
J R Coll Physicians Edinb. 2012;42 Suppl 18:5-22. doi: 10.4997/JRCPE.2012.S02.
10
Sensitivity of routine intensive care unit surveillance for detecting myocardial ischemia.
Crit Care Med. 2003 Sep;31(9):2302-8. doi: 10.1097/01.CCM.0000084857.87446.DD.

引用本文的文献

1
Multivariate filter methods for feature selection with the -metric.
BMC Med Res Methodol. 2024 Dec 19;24(1):307. doi: 10.1186/s12874-024-02426-9.
2
The Correlation between Epicardial Adipose Tissue Thickness Measured by Echocardiography and P-Wave Dispersion and Atrial Fibrillation.
Rev Cardiovasc Med. 2024 Aug 15;25(8):287. doi: 10.31083/j.rcm2508287. eCollection 2024 Aug.
3
5
Performance of Single-Lead Handheld Electrocardiograms for Atrial Fibrillation Screening in Primary Care: The VITAL-AF Trial.
JACC Adv. 2023 Sep 20;2(8):100616. doi: 10.1016/j.jacadv.2023.100616. eCollection 2023 Oct.
7
Diagnostic Performance of an Automated Blood Pressure Monitor With an Irregular Heartbeat Algorithm Designed to Detect Atrial Fibrillation.
Circ Rep. 2024 Mar 22;6(4):110-117. doi: 10.1253/circrep.CR-24-0008. eCollection 2024 Apr 10.
8
High Diagnostic Accuracy of Long-Term Electrocardiogram Interpretation by General Practitioners.
Int J Telemed Appl. 2024 Feb 22;2024:6624344. doi: 10.1155/2024/6624344. eCollection 2024.
9
Artificial Intelligence-Based Clinical Decision Support Systems in Cardiovascular Diseases.
Anatol J Cardiol. 2024 Jan 7;28(2):74-86. doi: 10.14744/AnatolJCardiol.2023.3685.

本文引用的文献

3
Antithrombotic treatment in atrial fibrillation.
Heart. 2006 Feb;92(2):155-61. doi: 10.1136/hrt.2005.066944. Epub 2005 Sep 13.
4
Diagnostic performance of a computer-based ECG rhythm algorithm.
J Electrocardiol. 2005 Jul;38(3):235-8. doi: 10.1016/j.jelectrocard.2005.01.008.
5
Competency in interpretation of 12-lead electrocardiograms: a summary and appraisal of published evidence.
Ann Intern Med. 2003 May 6;138(9):751-60. doi: 10.7326/0003-4819-138-9-200305060-00013.
8
Prevalence of atrial fibrillation and eligibility for anticoagulants in the community.
Lancet. 1998 Oct 10;352(9135):1167-71. doi: 10.1016/S0140-6736(98)01401-9.
10
Screening for atrial fibrillation in primary care.
Heart. 1998 Jan;79(1):50-5. doi: 10.1136/hrt.79.1.50.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验