Suppr超能文献

基于心电图的机器学习算法在人群层面心血管疾病诊断中的开发与验证。

Development and validation of machine learning algorithms based on electrocardiograms for cardiovascular diagnoses at the population level.

作者信息

Kalmady Sunil Vasu, Salimi Amir, Sun Weijie, Sepehrvand Nariman, Nademi Yousef, Bainey Kevin, Ezekowitz Justin, Hindle Abram, McAlister Finlay, Greiner Russel, Sandhu Roopinder, Kaul Padma

机构信息

Department of Computing Science, University of Alberta, Edmonton, AB, Canada.

Canadian VIGOUR Centre, Department of Medicine, University of Alberta, Edmonton, AB, Canada.

出版信息

NPJ Digit Med. 2024 May 18;7(1):133. doi: 10.1038/s41746-024-01130-8.

Abstract

Artificial intelligence-enabled electrocardiogram (ECG) algorithms are gaining prominence for the early detection of cardiovascular (CV) conditions, including those not traditionally associated with conventional ECG measures or expert interpretation. This study develops and validates such models for simultaneous prediction of 15 different common CV diagnoses at the population level. We conducted a retrospective study that included 1,605,268 ECGs of 244,077 adult patients presenting to 84 emergency departments or hospitals, who underwent at least one 12-lead ECG from February 2007 to April 2020 in Alberta, Canada, and considered 15 CV diagnoses, as identified by International Classification of Diseases, 10th revision (ICD-10) codes: atrial fibrillation (AF), supraventricular tachycardia (SVT), ventricular tachycardia (VT), cardiac arrest (CA), atrioventricular block (AVB), unstable angina (UA), ST-elevation myocardial infarction (STEMI), non-STEMI (NSTEMI), pulmonary embolism (PE), hypertrophic cardiomyopathy (HCM), aortic stenosis (AS), mitral valve prolapse (MVP), mitral valve stenosis (MS), pulmonary hypertension (PHTN), and heart failure (HF). We employed ResNet-based deep learning (DL) using ECG tracings and extreme gradient boosting (XGB) using ECG measurements. When evaluated on the first ECGs per episode of 97,631 holdout patients, the DL models had an area under the receiver operating characteristic curve (AUROC) of <80% for 3 CV conditions (PTE, SVT, UA), 80-90% for 8 CV conditions (CA, NSTEMI, VT, MVP, PHTN, AS, AF, HF) and an AUROC > 90% for 4 diagnoses (AVB, HCM, MS, STEMI). DL models outperformed XGB models with about 5% higher AUROC on average. Overall, ECG-based prediction models demonstrated good-to-excellent prediction performance in diagnosing common CV conditions.

摘要

启用人工智能的心电图(ECG)算法在心血管(CV)疾病的早期检测中日益突出,包括那些传统上与常规心电图测量或专家解读无关的疾病。本研究开发并验证了此类模型,用于在人群水平上同时预测15种不同的常见CV诊断。我们进行了一项回顾性研究,纳入了244,077名成年患者的1,605,268份心电图,这些患者前往加拿大艾伯塔省的84家急诊科或医院就诊,在2007年2月至2020年4月期间至少接受了一次12导联心电图检查,并考虑了国际疾病分类第10版(ICD - 10)编码确定的15种CV诊断:心房颤动(AF)、室上性心动过速(SVT)、室性心动过速(VT)、心脏骤停(CA)、房室传导阻滞(AVB)、不稳定型心绞痛(UA)、ST段抬高型心肌梗死(STEMI)、非ST段抬高型心肌梗死(NSTEMI)、肺栓塞(PE)、肥厚型心肌病(HCM)、主动脉瓣狭窄(AS)、二尖瓣脱垂(MVP)、二尖瓣狭窄(MS)、肺动脉高压(PHTN)和心力衰竭(HF)。我们使用基于心电图描记的基于ResNet的深度学习(DL)和基于心电图测量的极端梯度提升(XGB)。在对97,631名保留患者每次发作的首次心电图进行评估时,DL模型对于3种CV疾病(PTE、SVT、UA)的受试者操作特征曲线下面积(AUROC)<80%,对于8种CV疾病(CA、NSTEMI、VT、MVP、PHTN、AS、AF、HF)的AUROC为80 - 90%,对于4种诊断(AVB、HCM、MS、STEMI)的AUROC>90%。DL模型的表现优于XGB模型,平均AUROC高出约5%。总体而言,基于心电图的预测模型在诊断常见CV疾病方面表现出良好至优异的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1360/11102430/0e52709cf7d2/41746_2024_1130_Fig1_HTML.jpg

相似文献

8
The utility of the triage electrocardiogram for the detection of ST-segment elevation myocardial infarction.
Am J Emerg Med. 2018 Oct;36(10):1771-1774. doi: 10.1016/j.ajem.2018.01.083. Epub 2018 Feb 3.
9
A Deep Learning Algorithm for Detecting Acute Pericarditis by Electrocardiogram.
J Pers Med. 2022 Jul 15;12(7):1150. doi: 10.3390/jpm12071150.
10
Artificial intelligence-enabled classification of hypertrophic heart diseases using electrocardiograms.
Cardiovasc Digit Health J. 2023 Mar 7;4(2):48-59. doi: 10.1016/j.cvdhj.2023.03.001. eCollection 2023 Apr.

引用本文的文献

1
Artificial Intelligence in Diagnosis of Heart Failure.
J Am Heart Assoc. 2025 Apr 15;14(8):e039511. doi: 10.1161/JAHA.124.039511. Epub 2025 Apr 10.
2
Deep learning for electrocardiogram interpretation: Bench to bedside.
Eur J Clin Invest. 2025 Apr;55 Suppl 1(Suppl 1):e70002. doi: 10.1111/eci.70002.
4
A Comprehensive Review of Artificial Intelligence (AI) Applications in Pulmonary Hypertension (PH).
Medicina (Kaunas). 2025 Jan 7;61(1):85. doi: 10.3390/medicina61010085.
5
Machine Learning-Based Prediction of Pulmonary Embolism Prognosis Using Nutritional and Inflammatory Indices.
Clin Appl Thromb Hemost. 2024 Jan-Dec;30:10760296241300484. doi: 10.1177/10760296241300484.

本文引用的文献

2
Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction.
Nat Med. 2023 Jul;29(7):1804-1813. doi: 10.1038/s41591-023-02396-3. Epub 2023 Jun 29.
4
ECG-guided non-invasive estimation of pulmonary congestion in patients with heart failure.
Sci Rep. 2023 Mar 9;13(1):3923. doi: 10.1038/s41598-023-30900-9.
6
Electrocardiogram Detection of Pulmonary Hypertension Using Deep Learning.
J Card Fail. 2023 Jul;29(7):1017-1028. doi: 10.1016/j.cardfail.2022.12.016. Epub 2023 Jan 24.
8
10
Multinational Federated Learning Approach to Train ECG and Echocardiogram Models for Hypertrophic Cardiomyopathy Detection.
Circulation. 2022 Sep 6;146(10):755-769. doi: 10.1161/CIRCULATIONAHA.121.058696. Epub 2022 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验