Kalmady Sunil Vasu, Salimi Amir, Sun Weijie, Sepehrvand Nariman, Nademi Yousef, Bainey Kevin, Ezekowitz Justin, Hindle Abram, McAlister Finlay, Greiner Russel, Sandhu Roopinder, Kaul Padma
Department of Computing Science, University of Alberta, Edmonton, AB, Canada.
Canadian VIGOUR Centre, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
NPJ Digit Med. 2024 May 18;7(1):133. doi: 10.1038/s41746-024-01130-8.
Artificial intelligence-enabled electrocardiogram (ECG) algorithms are gaining prominence for the early detection of cardiovascular (CV) conditions, including those not traditionally associated with conventional ECG measures or expert interpretation. This study develops and validates such models for simultaneous prediction of 15 different common CV diagnoses at the population level. We conducted a retrospective study that included 1,605,268 ECGs of 244,077 adult patients presenting to 84 emergency departments or hospitals, who underwent at least one 12-lead ECG from February 2007 to April 2020 in Alberta, Canada, and considered 15 CV diagnoses, as identified by International Classification of Diseases, 10th revision (ICD-10) codes: atrial fibrillation (AF), supraventricular tachycardia (SVT), ventricular tachycardia (VT), cardiac arrest (CA), atrioventricular block (AVB), unstable angina (UA), ST-elevation myocardial infarction (STEMI), non-STEMI (NSTEMI), pulmonary embolism (PE), hypertrophic cardiomyopathy (HCM), aortic stenosis (AS), mitral valve prolapse (MVP), mitral valve stenosis (MS), pulmonary hypertension (PHTN), and heart failure (HF). We employed ResNet-based deep learning (DL) using ECG tracings and extreme gradient boosting (XGB) using ECG measurements. When evaluated on the first ECGs per episode of 97,631 holdout patients, the DL models had an area under the receiver operating characteristic curve (AUROC) of <80% for 3 CV conditions (PTE, SVT, UA), 80-90% for 8 CV conditions (CA, NSTEMI, VT, MVP, PHTN, AS, AF, HF) and an AUROC > 90% for 4 diagnoses (AVB, HCM, MS, STEMI). DL models outperformed XGB models with about 5% higher AUROC on average. Overall, ECG-based prediction models demonstrated good-to-excellent prediction performance in diagnosing common CV conditions.
启用人工智能的心电图(ECG)算法在心血管(CV)疾病的早期检测中日益突出,包括那些传统上与常规心电图测量或专家解读无关的疾病。本研究开发并验证了此类模型,用于在人群水平上同时预测15种不同的常见CV诊断。我们进行了一项回顾性研究,纳入了244,077名成年患者的1,605,268份心电图,这些患者前往加拿大艾伯塔省的84家急诊科或医院就诊,在2007年2月至2020年4月期间至少接受了一次12导联心电图检查,并考虑了国际疾病分类第10版(ICD - 10)编码确定的15种CV诊断:心房颤动(AF)、室上性心动过速(SVT)、室性心动过速(VT)、心脏骤停(CA)、房室传导阻滞(AVB)、不稳定型心绞痛(UA)、ST段抬高型心肌梗死(STEMI)、非ST段抬高型心肌梗死(NSTEMI)、肺栓塞(PE)、肥厚型心肌病(HCM)、主动脉瓣狭窄(AS)、二尖瓣脱垂(MVP)、二尖瓣狭窄(MS)、肺动脉高压(PHTN)和心力衰竭(HF)。我们使用基于心电图描记的基于ResNet的深度学习(DL)和基于心电图测量的极端梯度提升(XGB)。在对97,631名保留患者每次发作的首次心电图进行评估时,DL模型对于3种CV疾病(PTE、SVT、UA)的受试者操作特征曲线下面积(AUROC)<80%,对于8种CV疾病(CA、NSTEMI、VT、MVP、PHTN、AS、AF、HF)的AUROC为80 - 90%,对于4种诊断(AVB、HCM、MS、STEMI)的AUROC>90%。DL模型的表现优于XGB模型,平均AUROC高出约5%。总体而言,基于心电图的预测模型在诊断常见CV疾病方面表现出良好至优异的预测性能。