Suppr超能文献

用于耳蜗力学研究的仪器:从冯·贝克西开始。

Instrumentation for studies of cochlear mechanics: from von Békésy forward.

机构信息

Oregon Hearing Research Center, Dept. of Otolaryngology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.

出版信息

Hear Res. 2012 Nov;293(1-2):3-11. doi: 10.1016/j.heares.2012.08.009. Epub 2012 Sep 10.

Abstract

Georg von Békésy designed the instruments needed for his research. He also created physical models of the cochlea allowing him to manipulate the parameters (such as volume elasticity) that could be involved in controlling traveling waves. This review is about the specific devices that he used to study the motion of the basilar membrane thus allowing the analysis that lead to his Nobel Prize Award. The review moves forward in time mentioning the subsequent use of von Békésy's methods and later technologies important for motion studies of the organ of Corti. Some of the seminal findings and the controversies of cochlear mechanics are mentioned in relation to the technical developments.

摘要

乔治·冯·贝克西设计了他的研究所需的仪器。他还创建了耳蜗的物理模型,使他能够操纵可能参与控制行波的参数(如体积弹性)。这篇综述是关于他用于研究基底膜运动的特定设备,从而使他获得诺贝尔奖的分析。该综述按照时间顺序提及随后使用贝克西方法和后来对耳蜗器官运动研究很重要的技术。在提到技术发展时,还提到了一些开创性的发现和耳蜗力学的争议。

相似文献

1
Instrumentation for studies of cochlear mechanics: from von Békésy forward.
Hear Res. 2012 Nov;293(1-2):3-11. doi: 10.1016/j.heares.2012.08.009. Epub 2012 Sep 10.
2
Von Békésy and cochlear mechanics.
Hear Res. 2012 Nov;293(1-2):31-43. doi: 10.1016/j.heares.2012.04.017. Epub 2012 May 22.
3
Experiments in comparative hearing: Georg von Békésy and beyond.
Hear Res. 2012 Nov;293(1-2):44-50. doi: 10.1016/j.heares.2012.04.013. Epub 2012 Apr 28.
4
Békésy's contributions to our present understanding of sound conduction to the inner ear.
Hear Res. 2012 Nov;293(1-2):21-30. doi: 10.1016/j.heares.2012.05.004. Epub 2012 May 19.
6
Contributions of von Békésy to psychoacoustics.
Hear Res. 2012 Nov;293(1-2):51-7. doi: 10.1016/j.heares.2012.04.009. Epub 2012 Apr 26.
7
Progress in cochlear physiology after Békésy.
Hear Res. 2012 Nov;293(1-2):12-20. doi: 10.1016/j.heares.2012.05.005. Epub 2012 May 23.
9
Travelling waves and tonotopicity in the inner ear: a historical and comparative perspective.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2018 Oct;204(9-10):773-781. doi: 10.1007/s00359-018-1279-8. Epub 2018 Aug 16.
10
Five decades of research on cochlear mechanics.
J Acoust Soc Am. 1980 May;67(5):1679-85. doi: 10.1121/1.384294.

引用本文的文献

1
The Relevance of Autophagy within Inner Ear in Baseline Conditions and Tinnitus-Related Syndromes.
Int J Mol Sci. 2023 Nov 23;24(23):16664. doi: 10.3390/ijms242316664.
2
Outer hair cell driven reticular lamina mechanical distortion in living cochleae.
Hear Res. 2022 Sep 15;423:108405. doi: 10.1016/j.heares.2021.108405. Epub 2021 Nov 27.
3
The role of the medial olivocochlear reflex in psychophysical masking and intensity resolution in humans: a review.
J Neurophysiol. 2021 Jun 1;125(6):2279-2308. doi: 10.1152/jn.00672.2020. Epub 2021 Apr 28.
4
Cochlear mechanics: new insights from vibrometry and Optical Coherence Tomography.
Curr Opin Physiol. 2020 Dec;18:56-62. doi: 10.1016/j.cophys.2020.08.022. Epub 2020 Sep 5.
5
Revealing the morphology and function of the cochlea and middle ear with optical coherence tomography.
Quant Imaging Med Surg. 2019 May;9(5):858-881. doi: 10.21037/qims.2019.05.10.
7
Multifrequency-swept optical coherence microscopy for highspeed full-field tomographic vibrometry in biological tissues.
Biomed Opt Express. 2017 Jan 6;8(2):608-621. doi: 10.1364/BOE.8.000608. eCollection 2017 Feb 1.
9
Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.
Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3128-33. doi: 10.1073/pnas.1500038112. Epub 2015 Mar 3.
10
In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography.
Biomed Opt Express. 2013 Feb 1;4(2):230-40. doi: 10.1364/BOE.4.00230. Epub 2013 Jan 15.

本文引用的文献

1
In vivo outer hair cell length changes expose the active process in the cochlea.
PLoS One. 2012;7(4):e32757. doi: 10.1371/journal.pone.0032757. Epub 2012 Apr 9.
4
Dual traveling waves in an inner ear model with two degrees of freedom.
Phys Rev Lett. 2011 Aug 19;107(8):088101. doi: 10.1103/PhysRevLett.107.088101. Epub 2011 Aug 16.
6
The endocochlear potential alters cochlear micromechanics.
Biophys J. 2011 Jun 8;100(11):2586-94. doi: 10.1016/j.bpj.2011.05.002.
7
Auditory nerve excitation via a non-traveling wave mode of basilar membrane motion.
J Assoc Res Otolaryngol. 2011 Oct;12(5):559-75. doi: 10.1007/s10162-011-0272-5. Epub 2011 May 28.
8
A differentially amplified motion in the ear for near-threshold sound detection.
Nat Neurosci. 2011 Jun;14(6):770-4. doi: 10.1038/nn.2827. Epub 2011 May 22.
9
Measurement of cochlear power gain in the sensitive gerbil ear.
Nat Commun. 2011;2:216. doi: 10.1038/ncomms1226.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验