Suppr超能文献

扫视目标选择的动力学:人类和猕猴中双步和搜索步扫视产生的竞赛模型分析

Dynamics of saccade target selection: race model analysis of double step and search step saccade production in human and macaque.

作者信息

Camalier C R, Gotler A, Murthy A, Thompson K G, Logan G D, Palmeri T J, Schall J D

机构信息

Department of Psychology, Wilson Hall, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, 111 21st Avenue South, Nashville, TN 37203, USA.

出版信息

Vision Res. 2007 Jul;47(16):2187-211. doi: 10.1016/j.visres.2007.04.021. Epub 2007 Jul 2.

Abstract

We investigated how saccade target selection by humans and macaque monkeys reacts to unexpected changes of the image. This was explored using double step and search step tasks in which a target, presented alone or as a singleton in a visual search array, steps to a different location on infrequent, random trials. We report that human and macaque monkey performance are qualitatively indistinguishable. Performance is stochastic with the probability of producing a compensated saccade to the final target location decreasing with the delay of the step. Compensated saccades to the final target location are produced with latencies relative to the step that are comparable to or less than the average latency of saccades on trials with no target step. Noncompensated errors to the initial target location are produced with latencies less than the average latency of saccades on trials with no target step. Noncompensated saccades to the initial target location are followed by corrective saccades to the final target location following an intersaccade interval that decreases with the interval between the target step and the initiation of the noncompensated saccade. We show that this pattern of results cannot be accounted for by a race between two stochastically independent processes producing the saccade to the initial target location and another process producing the saccade to the final target location. However, performance can be accounted for by a race between three stochastically independent processes--a GO process producing the saccade to the initial target location, a STOP process interrupting that GO process, and another GO process producing the saccade to the final target location. Furthermore, if the STOP process and second GO process start at the same time, then the model can account for the incidence and latency of mid-flight corrections and rapid corrective saccades. This model provides a computational account of saccade production when the image changes unexpectedly.

摘要

我们研究了人类和猕猴的扫视目标选择如何对图像的意外变化做出反应。这是通过双步和搜索步任务进行探究的,在这些任务中,单独呈现或作为视觉搜索阵列中的单独元素的目标,在不频繁的随机试验中会移动到不同的位置。我们报告称,人类和猕猴的表现从质的方面来看难以区分。表现具有随机性,产生向最终目标位置的补偿性扫视的概率会随着步移的延迟而降低。相对于步移而言,向最终目标位置的补偿性扫视的潜伏期与无目标步移试验中扫视的平均潜伏期相当或更短。向初始目标位置的非补偿性错误产生的潜伏期比无目标步移试验中扫视的平均潜伏期要短。向初始目标位置的非补偿性扫视之后会跟着向最终目标位置的校正性扫视,校间扫视间隔会随着目标步移与非补偿性扫视启动之间的间隔而缩短。我们表明,这种结果模式无法用产生向初始目标位置的扫视的两个随机独立过程与产生向最终目标位置的扫视的另一个过程之间的竞争来解释。然而,表现可以用三个随机独立过程之间的竞争来解释——一个产生向初始目标位置的扫视的启动过程、一个中断该启动过程的停止过程,以及另一个产生向最终目标位置的扫视的启动过程。此外,如果停止过程和第二个启动过程同时开始,那么该模型就能解释飞行中校正和快速校正性扫视的发生率和潜伏期。该模型为图像意外变化时扫视产生提供了一种计算解释。

相似文献

1
Dynamics of saccade target selection: race model analysis of double step and search step saccade production in human and macaque.
Vision Res. 2007 Jul;47(16):2187-211. doi: 10.1016/j.visres.2007.04.021. Epub 2007 Jul 2.
4
Frontal eye field contributions to rapid corrective saccades.
J Neurophysiol. 2007 Feb;97(2):1457-69. doi: 10.1152/jn.00433.2006. Epub 2006 Nov 29.
5
Express saccades during a countermanding task.
J Neurophysiol. 2020 Aug 1;124(2):484-496. doi: 10.1152/jn.00365.2020. Epub 2020 Jul 15.
6
Neural control of visual search by frontal eye field: chronometry of neural events and race model processes.
J Neurophysiol. 2016 Apr;115(4):1954-69. doi: 10.1152/jn.01023.2014. Epub 2016 Feb 10.
7
Countermanding saccades in macaque.
Vis Neurosci. 1995 Sep-Oct;12(5):929-37. doi: 10.1017/s0952523800009482.
8
Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding.
J Neurophysiol. 2009 Dec;102(6):3091-100. doi: 10.1152/jn.00270.2009. Epub 2009 Sep 23.
9
Predictive saccade target selection in superior colliculus during visual search.
J Neurosci. 2014 Apr 16;34(16):5640-8. doi: 10.1523/JNEUROSCI.3880-13.2014.
10
Nonindependent and nonstationary response times in stopping and stepping saccade tasks.
Atten Percept Psychophys. 2010 Oct;72(7):1913-29. doi: 10.3758/APP.72.7.1913.

引用本文的文献

1
Inhibition of return emerges with non-predictive spatial cueing of the stop-signal.
Front Hum Neurosci. 2025 Jul 2;19:1567597. doi: 10.3389/fnhum.2025.1567597. eCollection 2025.
2
Spatiotemporal survival analysis for movement trajectory tracking in virtual reality.
Sci Rep. 2025 Mar 1;15(1):7313. doi: 10.1038/s41598-025-91471-5.
3
Computational mechanism underlying switching of motor actions.
PLoS Comput Biol. 2025 Feb 10;21(2):e1012811. doi: 10.1371/journal.pcbi.1012811. eCollection 2025 Feb.
4
Primate eye tracking with carbon-nanotube-paper-composite based capacitive sensors and machine learning algorithms.
J Neurosci Methods. 2024 Oct;410:110249. doi: 10.1016/j.jneumeth.2024.110249. Epub 2024 Aug 14.
6
Attentional spatial cueing of the stop-signal affects the ability to suppress behavioural responses.
Exp Brain Res. 2024 Jun;242(6):1429-1438. doi: 10.1007/s00221-024-06825-8. Epub 2024 Apr 23.
7
A competition framework for fixation-preference in strabismus.
Front Neurosci. 2023 Oct 18;17:1266387. doi: 10.3389/fnins.2023.1266387. eCollection 2023.
8
Neurophysiological mechanisms of error monitoring in human and non-human primates.
Nat Rev Neurosci. 2023 Mar;24(3):153-172. doi: 10.1038/s41583-022-00670-w. Epub 2023 Jan 27.
10
Contextual saccade adaptation induced by sequential saccades.
J Neurophysiol. 2022 Mar 1;127(3):746-755. doi: 10.1152/jn.00221.2021. Epub 2022 Feb 16.

本文引用的文献

2
Inhibitory control in mind and brain: an interactive race model of countermanding saccades.
Psychol Rev. 2007 Apr;114(2):376-97. doi: 10.1037/0033-295X.114.2.376.
3
Frontal eye field contributions to rapid corrective saccades.
J Neurophysiol. 2007 Feb;97(2):1457-69. doi: 10.1152/jn.00433.2006. Epub 2006 Nov 29.
4
A population coding account for systematic variation in saccadic dead time.
J Neurophysiol. 2007 Jan;97(1):795-805. doi: 10.1152/jn.00652.2006. Epub 2006 Nov 15.
5
Guidance of eye movements during visual conjunction search: local and global contextual effects on target discriminability.
J Neurophysiol. 2006 May;95(5):2845-55. doi: 10.1152/jn.00898.2005. Epub 2006 Feb 8.
6
Dynamic ensemble coding of saccades in the monkey superior colliculus.
J Neurophysiol. 2006 Apr;95(4):2326-41. doi: 10.1152/jn.00889.2005. Epub 2005 Dec 21.
7
A model of the saccade-generating system that accounts for trajectory variations produced by competing visual stimuli.
Biol Cybern. 2005 Jan;92(1):21-37. doi: 10.1007/s00422-004-0526-y. Epub 2004 Dec 10.
8
Parameterization of connectionist models.
Behav Res Methods Instrum Comput. 2004 Nov;36(4):732-41. doi: 10.3758/bf03206554.
9
Simulations of saccade curvature by models that place superior colliculus upstream from the local feedback loop.
J Neurophysiol. 2005 Apr;93(4):2354-8. doi: 10.1152/jn.01199.2004. Epub 2004 Dec 22.
10
Programming of double-step saccade sequences: modulation by cognitive control.
Vision Res. 2004 Oct;44(23):2707-18. doi: 10.1016/j.visres.2004.05.029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验