Suppr超能文献

在猕猴额眼区的扫视抑制过程中,视动神经元和运动神经元之间的功能区别。

Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding.

机构信息

Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University, Nashville, TN 37240-7817, USA.

出版信息

J Neurophysiol. 2009 Dec;102(6):3091-100. doi: 10.1152/jn.00270.2009. Epub 2009 Sep 23.

Abstract

In the previous studies on the neural control of saccade initiation using the countermanding paradigm, movement and visuomovement neurons in the frontal eye field were grouped as movement-related neurons. The activity of both types of neurons was modulated when a saccade was inhibited in response to a stop signal, and this modulation occurred early enough to contribute to the control of the saccade initiation. We now report a functional difference between these two classes of neurons when saccades are produced. Movement neurons exhibited a progressive accumulation of discharge rate following target presentation that triggered a saccade when it reached a threshold. When saccades were inhibited with lower probability in response to a stop signal appearing at longer delays, this accumulating activity was interrupted at levels progressively closer to the threshold. In contrast, visuomovement neurons exhibited a maintained elevated discharge rate following target presentation that was followed by a further enhancement immediately before the saccade initiation. When saccades were inhibited in response to a stop signal, the late enhancement was absent and the maintained activity decayed regardless of stop-signal delay. These results demonstrate that the activity of movement neurons realizes the progressive commitment to the saccade initiation modeled by the activation of the go unit in computational models of countermanding performance. The lack of correspondence of the activity of visuomovement neurons with any elements of these models indicates that visuomovement neurons perform a function other than the saccade preparation such as a corollary discharge to update visual processing.

摘要

在使用反指令范式研究眼球运动起始的神经控制的先前研究中,额眼区的运动和视动神经元被归类为运动相关神经元。当对停止信号做出反应而抑制眼球运动时,这两种类型的神经元的活动都被调制,这种调制发生得足够早,足以有助于控制眼球运动的起始。我们现在报告在产生眼球运动时,这两类神经元之间存在功能差异。运动神经元在目标呈现后表现出放电率的逐渐积累,当达到阈值时,就会引发眼球运动。当由于更长延迟出现的停止信号以较低的概率抑制眼球运动时,这种累积活动在逐渐接近阈值的水平上被中断。相比之下,视动神经元在目标呈现后表现出维持的放电率升高,随后在眼球运动起始前进一步增强。当对停止信号做出反应而抑制眼球运动时,后期增强不存在,维持的活动无论停止信号延迟如何都会衰减。这些结果表明,运动神经元的活动实现了逐步承诺,即通过计算模型中反指令性能的 Go 单元的激活来模拟眼球运动的起始。视动神经元的活动与这些模型的任何元素都不对应,表明视动神经元执行的是除眼球运动准备之外的功能,例如进行相关放电以更新视觉处理。

相似文献

1
Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding.
J Neurophysiol. 2009 Dec;102(6):3091-100. doi: 10.1152/jn.00270.2009. Epub 2009 Sep 23.
2
Relation of frontal eye field activity to saccade initiation during a countermanding task.
Exp Brain Res. 2008 Sep;190(2):135-51. doi: 10.1007/s00221-008-1455-0. Epub 2008 Jul 5.
4
Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity.
J Neurophysiol. 1998 Feb;79(2):817-34. doi: 10.1152/jn.1998.79.2.817.
5
Controlled movement processing: superior colliculus activity associated with countermanded saccades.
J Neurosci. 2003 Jul 23;23(16):6480-9. doi: 10.1523/JNEUROSCI.23-16-06480.2003.
7
Physiological correlate of fixation disengagement in the primate's frontal eye field.
J Neurophysiol. 1994 Nov;72(5):2532-7. doi: 10.1152/jn.1994.72.5.2532.
8
Neural basis of adaptive response time adjustment during saccade countermanding.
J Neurosci. 2011 Aug 31;31(35):12604-12. doi: 10.1523/JNEUROSCI.1868-11.2011.
9
Primate frontal eye fields. I. Single neurons discharging before saccades.
J Neurophysiol. 1985 Mar;53(3):603-35. doi: 10.1152/jn.1985.53.3.603.
10
Neural mechanisms underlying the temporal control of sequential saccade planning in the frontal eye field.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2108922118.

引用本文的文献

1
Parallel signatures of cognitive maturation in primate antisaccade performance and prefrontal activity.
iScience. 2024 Jul 11;27(8):110488. doi: 10.1016/j.isci.2024.110488. eCollection 2024 Aug 16.
2
3
Influence of the Location of a Decision Cue on the Dynamics of Pupillary Light Response.
Front Hum Neurosci. 2022 Jan 26;15:755383. doi: 10.3389/fnhum.2021.755383. eCollection 2021.
4
Intracellular Properties of Deep-Layer Pyramidal Neurons in Frontal Eye Field of Macaque Monkeys.
Front Synaptic Neurosci. 2021 Sep 21;13:725880. doi: 10.3389/fnsyn.2021.725880. eCollection 2021.
5
Neural mechanisms underlying the temporal control of sequential saccade planning in the frontal eye field.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2108922118.
6
Spatiotemporal transformations for gaze control.
Physiol Rep. 2020 Aug;8(16):e14533. doi: 10.14814/phy2.14533.
7
Efficacy of inhibitory control depends on procrastination and deceleration in saccade planning.
Exp Brain Res. 2020 Oct;238(10):2417-2432. doi: 10.1007/s00221-020-05901-z. Epub 2020 Aug 9.
9
Distinct Sources of Variability Affect Eye Movement Preparation.
J Neurosci. 2019 Jun 5;39(23):4511-4526. doi: 10.1523/JNEUROSCI.2329-18.2019. Epub 2019 Mar 26.
10
Neurally constrained modeling of speed-accuracy tradeoff during visual search: gated accumulation of modulated evidence.
J Neurophysiol. 2019 Apr 1;121(4):1300-1314. doi: 10.1152/jn.00507.2018. Epub 2019 Feb 6.

本文引用的文献

2
Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model.
J Neurosci. 2009 Jul 15;29(28):9059-71. doi: 10.1523/JNEUROSCI.6164-08.2009.
5
Biophysical support for functionally distinct cell types in the frontal eye field.
J Neurophysiol. 2009 Feb;101(2):912-6. doi: 10.1152/jn.90272.2008. Epub 2008 Dec 3.
6
A "gap effect" on stop signal reaction times in a human saccadic countermanding task.
J Neurophysiol. 2009 Feb;101(2):580-90. doi: 10.1152/jn.90891.2008. Epub 2008 Nov 19.
7
Relation of frontal eye field activity to saccade initiation during a countermanding task.
Exp Brain Res. 2008 Sep;190(2):135-51. doi: 10.1007/s00221-008-1455-0. Epub 2008 Jul 5.
8
Brain circuits for the internal monitoring of movements.
Annu Rev Neurosci. 2008;31:317-38. doi: 10.1146/annurev.neuro.31.060407.125627.
9
Presaccadic discrimination of receptive field stimuli by area V4 neurons.
Vision Res. 2009 Jun;49(10):1227-32. doi: 10.1016/j.visres.2008.03.018. Epub 2008 May 23.
10
Decision-making with multiple alternatives.
Nat Neurosci. 2008 Jun;11(6):693-702. doi: 10.1038/nn.2123. Epub 2008 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验