Suppr超能文献

通过可变电阻耦合的离体兔心室细胞之间的单向阻滞

Unidirectional block between isolated rabbit ventricular cells coupled by a variable resistance.

作者信息

Joyner R W, Sugiura H, Tan R C

机构信息

Todd Franklin Cardiac Research Laboratory, Emory University, Atlanta, Georgia 30323.

出版信息

Biophys J. 1991 Nov;60(5):1038-45. doi: 10.1016/S0006-3495(91)82141-5.

Abstract

We have used pairs of electrically coupled cardiac cells to investigate the dependence of successful conduction of an action potential on three components of the conduction process: (a) the amount of depolarization required to be produced in the nonstimulated cell (the "sink" for current flow) to initiate an action potential in the nonstimulated cell, (b) the intercellular resistance as the path for intercellular current flow, and (c) the ability of the stimulated cell to maintain a high membrane potential to serve as the "source" of current during the conduction process. We present data from eight pairs of simultaneously recorded rabbit ventricular cells, with the two cells of each pair physically separated from each other. We used an electronic circuit to pass currents into and out of each cell such that these currents produced the effects of any desired level of intercellular resistance. The cells of equal size (as assessed by their current threshold and their input resistance for small depolarizations) show bidirectional failure of conduction at very high values of intercellular resistance which then converts to successful bidirectional conduction at lower values of intercellular resistance. For cell pairs with asymmetrical cell sizes, there is a large range of values of intercellular resistance over which unidirectional block occurs with conduction successful from the larger cell to the smaller cell but with conduction block from the smaller cell to the larger cell. We then further show that one important component which limits the conduction process is the large early repolarization which occurs in the stimulated cell during the process of conduction, a process that we term "source loading."

摘要

我们利用成对的电耦合心肌细胞来研究动作电位成功传导对传导过程三个组成部分的依赖性

(a) 在未受刺激的细胞(电流的“汇”)中产生动作电位所需的去极化量,(b) 作为细胞间电流通路的细胞间电阻,以及 (c) 受刺激细胞在传导过程中维持高膜电位作为电流“源”的能力。我们展示了来自八对同时记录的兔心室细胞的数据,每对中的两个细胞在物理上相互分离。我们使用一个电子电路向每个细胞注入电流和从每个细胞引出电流,使得这些电流产生任何所需细胞间电阻水平的效应。大小相等的细胞(通过其电流阈值和小去极化时的输入电阻评估)在非常高的细胞间电阻值时表现出双向传导失败,然后在较低的细胞间电阻值时转变为成功的双向传导。对于细胞大小不对称的细胞对,存在一个很大范围的细胞间电阻值,在此范围内会发生单向阻滞,即从较大细胞到较小细胞的传导成功,但从较小细胞到较大细胞的传导阻滞。然后我们进一步表明,限制传导过程的一个重要组成部分是在传导过程中受刺激细胞中发生的大的早期复极化,我们将这个过程称为“源负载”。

相似文献

1
Unidirectional block between isolated rabbit ventricular cells coupled by a variable resistance.
Biophys J. 1991 Nov;60(5):1038-45. doi: 10.1016/S0006-3495(91)82141-5.
2
Action potential conduction between a ventricular cell model and an isolated ventricular cell.
Biophys J. 1996 Jan;70(1):281-95. doi: 10.1016/S0006-3495(96)79569-3.
3
Action potential conduction between guinea pig ventricular cells can be modulated by calcium current.
Am J Physiol. 1992 Nov;263(5 Pt 2):H1591-604. doi: 10.1152/ajpheart.1992.263.5.H1591.
4
Conduction between isolated rabbit Purkinje and ventricular myocytes coupled by a variable resistance.
Am J Physiol. 1998 Apr;274(4):H1163-73. doi: 10.1152/ajpheart.1998.274.4.H1163.
5
Modulating L-type calcium current affects discontinuous cardiac action potential conduction.
Biophys J. 1996 Jul;71(1):237-45. doi: 10.1016/S0006-3495(96)79220-2.
6
Conduction block and chaotic dynamics in an asymmetrical model of coupled cardiac cells.
J Theor Biol. 1997 May 7;186(1):93-105. doi: 10.1006/jtbi.1996.0343.
7
Calcium currents of ventricular cell pairs during action potential conduction.
Am J Physiol. 1995 Jun;268(6 Pt 2):H2476-86. doi: 10.1152/ajpheart.1995.268.6.H2476.
8
Propagation through electrically coupled cells. Effects of a resistive barrier.
Biophys J. 1984 May;45(5):1017-25. doi: 10.1016/S0006-3495(84)84247-2.
10
Cell-to-cell electrical interactions during early and late repolarization.
J Cardiovasc Electrophysiol. 2006 May;17 Suppl 1:S8-S14. doi: 10.1111/j.1540-8167.2006.00379.x.

引用本文的文献

2
Stabilizer Cell Gene Therapy: A Less-Is-More Strategy to Prevent Cardiac Arrhythmias.
Circ Arrhythm Electrophysiol. 2020 Sep;13(9):e008420. doi: 10.1161/CIRCEP.120.008420. Epub 2020 Jul 27.
4
5
Restitution characteristics of His bundle and working myocardium in isolated rabbit hearts.
PLoS One. 2017 Oct 26;12(10):e0186880. doi: 10.1371/journal.pone.0186880. eCollection 2017.
6
A proposed route to independent measurements of tight junction conductance at discrete cell junctions.
Tissue Barriers. 2015 Nov 10;3(4):e1105907. doi: 10.1080/21688370.2015.1105907. eCollection 2015 Oct-Dec.
7
Stochastic spontaneous calcium release events trigger premature ventricular complexes by overcoming electrotonic load.
Cardiovasc Res. 2015 Jul 1;107(1):175-83. doi: 10.1093/cvr/cvv149. Epub 2015 May 12.
8
Role of sinoatrial node architecture in maintaining a balanced source-sink relationship and synchronous cardiac pacemaking.
Front Physiol. 2014 Nov 26;5:446. doi: 10.3389/fphys.2014.00446. eCollection 2014.
9
So little source, so much sink: requirements for afterdepolarizations to propagate in tissue.
Biophys J. 2010 Sep 8;99(5):1408-15. doi: 10.1016/j.bpj.2010.06.042.
10
Enhancement of ventricular gap-junction coupling by rotigaptide.
Cardiovasc Res. 2008 Aug 1;79(3):416-26. doi: 10.1093/cvr/cvn100. Epub 2008 Apr 22.

本文引用的文献

2
Physiologic evidence for a dual A-V transmission system.
Circ Res. 1956 Jul;4(4):357-75. doi: 10.1161/01.res.4.4.357.
3
The mechanism of AV junctional reentry: role of the atrionodal junction.
Anat Rec. 1981 Sep;201(1):179-88. doi: 10.1002/ar.1092010119.
4
Mechanisms of unidirectional block in cardiac tissues.
Biophys J. 1981 Jul;35(1):113-25. doi: 10.1016/S0006-3495(81)84778-9.
5
Unidirectional block in Purkinje fibers.
Can J Physiol Pharmacol. 1980 Aug;58(8):925-33. doi: 10.1139/y80-141.
6
Cellular electrophysiologic abnormalities of diseased human ventricular myocardium.
Am J Cardiol. 1983 Jan 1;51(1):137-44. doi: 10.1016/s0002-9149(83)80024-1.
7
Cable analysis in quiescent and active sheep Purkinje fibres.
J Physiol. 1984 Jul;352:739-57. doi: 10.1113/jphysiol.1984.sp015319.
8
Propagation through electrically coupled cells. Effects of a resistive barrier.
Biophys J. 1984 May;45(5):1017-25. doi: 10.1016/S0006-3495(84)84247-2.
9
Simple finite-element model accounts for wide range of cardiac dysrhythmias.
Proc Natl Acad Sci U S A. 1984 Jan;81(1):233-7. doi: 10.1073/pnas.81.1.233.
10
Propagation through electrically coupled cells: two inhomogeneously coupled cardiac tissue layers.
Am J Physiol. 1984 Oct;247(4 Pt 2):H596-609. doi: 10.1152/ajpheart.1984.247.4.H596.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验