Suppr超能文献

纤毛上皮细胞中中心粒组装的分子特征

Molecular characterization of centriole assembly in ciliated epithelial cells.

作者信息

Vladar Eszter K, Stearns Tim

机构信息

Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.

出版信息

J Cell Biol. 2007 Jul 2;178(1):31-42. doi: 10.1083/jcb.200703064.

Abstract

Ciliated epithelial cells have the unique ability to generate hundreds of centrioles during differentiation. We used centrosomal proteins as molecular markers in cultured mouse tracheal epithelial cells to understand this process. Most centrosomal proteins were up-regulated early in ciliogenesis, initially appearing in cytoplasmic foci and then incorporated into centrioles. Three candidate proteins were further characterized. The centrosomal component SAS-6 localized to basal bodies and the proximal region of the ciliary axoneme, and depletion of SAS-6 prevented centriole assembly. The intraflagellar transport component polaris localized to nascent centrioles before incorporation into cilia, and depletion of polaris blocked axoneme formation. The centriolar satellite component PCM-1 colocalized with centrosomal components in cytoplasmic granules surrounding nascent centrioles. Interfering with PCM-1 reduced the amount of centrosomal proteins at basal bodies but did not prevent centriole assembly. This system will help determine the mechanism of centriole formation in mammalian cells and how the limitation on centriole duplication is overcome in ciliated epithelial cells.

摘要

纤毛上皮细胞在分化过程中具有产生数百个中心粒的独特能力。我们利用中心体蛋白作为培养的小鼠气管上皮细胞中的分子标记来了解这一过程。大多数中心体蛋白在纤毛发生早期上调,最初出现在细胞质焦点中,然后整合到中心粒中。对三种候选蛋白进行了进一步表征。中心体成分SAS-6定位于基体和纤毛轴丝的近端区域,SAS-6的缺失阻止了中心粒组装。鞭毛内运输成分polaris在整合到纤毛之前定位于新生中心粒,polaris的缺失阻止了轴丝形成。中心粒卫星成分PCM-1与新生中心粒周围细胞质颗粒中的中心体成分共定位。干扰PCM-1会减少基体处中心体蛋白的数量,但不会阻止中心粒组装。该系统将有助于确定哺乳动物细胞中中心粒形成的机制,以及纤毛上皮细胞如何克服中心粒复制的限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157c/2064416/19cad4acfb10/jcb1780031f01.jpg

相似文献

1
Molecular characterization of centriole assembly in ciliated epithelial cells.
J Cell Biol. 2007 Jul 2;178(1):31-42. doi: 10.1083/jcb.200703064.
4
The novel centriolar satellite protein SSX2IP targets Cep290 to the ciliary transition zone.
Mol Biol Cell. 2014 Feb;25(4):495-507. doi: 10.1091/mbc.E13-09-0526. Epub 2013 Dec 19.
5
Dynamics of centriole amplification in centrosome-depleted brain multiciliated progenitors.
Sci Rep. 2019 Sep 10;9(1):13060. doi: 10.1038/s41598-019-49416-2.
7
A ciliopathy complex builds distal appendages to initiate ciliogenesis.
J Cell Biol. 2021 Sep 6;220(9). doi: 10.1083/jcb.202011133. Epub 2021 Jul 9.
8
MICAL-L1 coordinates ciliogenesis by recruiting EHD1 to the primary cilium.
J Cell Sci. 2019 Nov 14;132(22):jcs233973. doi: 10.1242/jcs.233973.
9
10
CDK5RAP2 regulates centriole engagement and cohesion in mice.
Dev Cell. 2010 Jun 15;18(6):913-26. doi: 10.1016/j.devcel.2010.05.017.

引用本文的文献

1
Synchronized temporal-spatial analysis via microscopy and phosphoproteomics (STAMP) of quiescence.
Sci Adv. 2025 Apr 25;11(17):eadt9712. doi: 10.1126/sciadv.adt9712.
2
Navigating centriolar satellites: the role of PCM1 in cellular and organismal processes.
FEBS J. 2025 Feb;292(4):688-708. doi: 10.1111/febs.17194. Epub 2024 Jun 2.
3
An alternative cell cycle coordinates multiciliated cell differentiation.
Nature. 2024 Jun;630(8015):214-221. doi: 10.1038/s41586-024-07476-z. Epub 2024 May 29.
4
Early Atf4 activity drives airway club and goblet cell differentiation.
Life Sci Alliance. 2024 Jan 4;7(3). doi: 10.26508/lsa.202302284. Print 2024 Mar.
5
Deup1 Expression Interferes with Multiciliated Differentiation.
Mol Cells. 2023 Dec 31;46(12):746-756. doi: 10.14348/molcells.2023.0149. Epub 2023 Nov 8.
6
Formation and function of multiciliated cells.
J Cell Biol. 2024 Jan 1;223(1). doi: 10.1083/jcb.202307150. Epub 2023 Nov 30.
7
CCDC15 localizes to the centriole inner scaffold and controls centriole length and integrity.
J Cell Biol. 2023 Dec 4;222(12). doi: 10.1083/jcb.202305009. Epub 2023 Nov 7.
8
A WNT4- and DKK3-driven canonical to noncanonical Wnt signaling switch controls multiciliogenesis.
J Cell Sci. 2023 Aug 15;136(16). doi: 10.1242/jcs.260807. Epub 2023 Aug 29.
9
A local translation program regulates centriole amplification in the airway epithelium.
Sci Rep. 2023 May 1;13(1):7090. doi: 10.1038/s41598-023-34365-8.
10
Notch signaling inactivation by small molecule γ-secretase inhibitors restores the multiciliated cell population in the airway epithelium.
Am J Physiol Lung Cell Mol Physiol. 2023 Jun 1;324(6):L771-L782. doi: 10.1152/ajplung.00382.2022. Epub 2023 Apr 11.

本文引用的文献

1
Transcriptional profiling of mucociliary differentiation in human airway epithelial cells.
Am J Respir Cell Mol Biol. 2007 Aug;37(2):169-85. doi: 10.1165/rcmb.2006-0466OC. Epub 2007 Apr 5.
3
Microtubule-organizing centres: a re-evaluation.
Nat Rev Mol Cell Biol. 2007 Feb;8(2):161-7. doi: 10.1038/nrm2100.
4
Lung development and repair: contribution of the ciliated lineage.
Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):410-7. doi: 10.1073/pnas.0610770104. Epub 2006 Dec 28.
5
Centriole assembly in Caenorhabditis elegans.
Nature. 2006 Nov 30;444(7119):619-23. doi: 10.1038/nature05318.
6
Cilia: tuning in to the cell's antenna.
Curr Biol. 2006 Aug 8;16(15):R604-14. doi: 10.1016/j.cub.2006.07.012.
7
Mechanism limiting centrosome duplication to once per cell cycle.
Nature. 2006 Aug 24;442(7105):947-51. doi: 10.1038/nature04985. Epub 2006 Jul 19.
8
Intraflagellar transport and cilium-based signaling.
Cell. 2006 May 5;125(3):439-42. doi: 10.1016/j.cell.2006.04.013.
9
Controlling centrosome number: licenses and blocks.
Curr Opin Cell Biol. 2006 Feb;18(1):74-8. doi: 10.1016/j.ceb.2005.12.008. Epub 2005 Dec 19.
10
Nearly all cells in vertebrates and many cells in invertebrates contain primary cilia.
Matrix Biol. 2005 Oct;24(7):449-50. doi: 10.1016/j.matbio.2005.09.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验